IRON, RUTHENIUM AND OSMIUM ANNUAL SURVEY COVERING THE YEAR 1972

J. A. McCLEVERTY

University of Sheffield (Great Britain)

Contents

Simple carbonyl complexes	423
Phosphine, arsine and stibine complexes of M ⁰	423
Complexes containing N and P bridges	426
Complexes containing O, Se, S and Fe donor atoms	429
Carbonyl halides	430
Complexes of M ^{II} containing Group VA donor atoms	432
Complexes containing σ -bonded Group IIB, IIIB and IVB elements	435
Metal carbonyl clusters	437
Metal trifluorophosphine complexes	448
Metal isocyanide complexes	449
Metal nitrosyl complexes	450
Metal carbene complexes	454
π -Cyclopentadienyl complexes	456
Neutral bi- and tetra-nuclear carbonyl complexes	456
Cationic complexes	461
Complexes containing P and S bridges	462
Halide complexes	464
Mixed metal compounds	465
Metal σ - and π -bonded carbon derivatives	468
Compounds containing B	478
Metal cyclobutadiene and arene complexes	479
Metal olefin complexes	484
Non-cyclic species	-484
Cyclic olefins	490
Allyl and trimethylenemethane complexes	501
Alkyl- and aryl-metal complexes	506
Organometallic complexes in synthesis and catalysis	509
References	514

Simple carbonyl complexes

Phosphine, arsine and stibine complexes of M^0

Detailed studies of the mass spectral fragmentation of $Fe(CO)_3[P(NMe_2)_3]_2$ have been reported [1]; ionisation and appearance potentials were measured. The ions $[Fe(CO)_3\{P(NMe_2)_3\}_2]^+$ and $[Fe(CO)_2\{P(NMe_2)_3\}_2]^+$ both lost two CO groups in one fragmentation step. UV irradiation of $Fe(CO)_5$ and $As(MMe_3)_3(M = Ge \text{ or } Sn)$ gave [2] $Fe(CO)_4[As(MMe_3)_3]$. The Mössbauer spectra ([2] Sb and ⁵⁷Fe) of $Fe(CO)_4(SbPh_3)$ and $Fe(CO)_3(SbPh_3)_2$ have been measured [3]; the isomer shift for ⁵⁷Fe increased on going from the mono- to the bis-substituted species, and the quadrupole splittings were apparently among the largest for low-spin Fe compounds.

Reaction of $Fe(CO)_5$ with $PMe_2(CH_2Ph)$ gave [4] impure $Fe(CO)_4$ -[$PMe_2(CH_2Ph)$] and trans- $Fe(CO)_3[PMe_2(CH_2Ph)]_2$, whereas the corresponding arsine gave only $Fe(CO)_4[AsMe_2(CH_2Ph)]$. In refluxing cyclohexane, $Ru_3(CO)_{12}$ afforded $Ru_3(CO)_9[QMe_2(CH_2Ph)]_3(Q = P \text{ or } As)$, and in boiling chloroform, $Ru(CO)_3[PMe_2(CH_2Ph)]Cl_2$ and $Ru(CO)_2[AsMe_2(CH_2Ph)]_2Cl_2$, I (L = $AsMe_2(CH_2Ph)$), were formed. The formation of the phosphine halide indicated that in $Ru_3(CO)_9[PMe_2(CH_2Ph)]_3$ only one phosphine ligand was coordinated to each Ru atom. With $[Ru(CO)_3Cl_2]_2$, the phosphine afforded I (L = $PMe_2(CH_2Ph)$), whereas the arsine gave both I (L = $AsMe_2(CH_2Ph)$ and II. $RuCl_3$ reacted with $PMe_2(CH_2Ph)$ producing $Ru[PMe_2(CH_2Ph)]_4Cl_2$ which could be carbonylated giving $Ru(CO)[PMe_2(CH_2Ph)]_3Cl_2$, III. Hydrogenation of $Ru[PMe_2(CH_2Ph)]_4Cl_2$ in dimethylacetamide afforded a carbonyl hydride adduct which was converted to I (L = $PMe_2(CH_2Ph)$) in chloroform under CO.

Iron carbonyls reacted [5] with $Ph_3P=CH(p-XC_6H_4)$ (X = H, Me or OMe) giving $Fe(CO)_4(PPh_3)$, Ph_3PO , reasonable yields of the appropriate stilbenes, and unstable and uncharacterised organometallic species. Corresponding alkyl ylides behaved similarly. Irradiation of $Fe(CO)_5$ in the presence of $P(OCH_2)_3P$ gave [6] $Fe(CO)_4[P(OCH_2)_3P]$, $Fe(CO)_4[P(CH_2O)_3P]$, $(OC)_4Fe[P(OCH_2)_3P]$ - $Fe(CO)_4$ and $Fe(CO)_3[P(OCH_2)_3P]_2$, IV. The structure of the last was established by ³¹P NMR spectroscopy.

Reaction of $Fe_2(CO)_9$ with PRH_2 and $PRR'H(R, R' = Me, Et, Ph or p-MeC_6H_4$; or mixtures of these) afforded [7] $Fe(CO)_4(PRH_2)$ or $Fe(CO)_4$ -(PRR"H). Small amounts of $Fe_2(CO)_6(\mu$ -PRR')_2, usually accompanied the formation of $Fe(CO)_4(PRR'H)$. The binuclear $Fe_2(CO)_6(PRR')H$, V, was also obtained by reaction of $Fe_2(CO)_9$ with PRR'H, or by addition of $Fe_2(CO)_9$ to $Fe(CO)_4(PRR'Li)$. The last was produced by treatment of $Fe(CO)_4(PRR'H)$ with LiBu-n. At higher temperatures, $Fe(CO)_4$ reacted with PPH2 giving $Fe_3(CO)_9(PPh)_2$ which gave, with $P(OMe)_3$, $Fe_3(CO)_{9-n}(PPh)_2[P(OMe)_3]_n$ (n = 1, 2 or 3). As mentioned previously $Fe(CO)_4(PPh_2H)$ could be deprotonated using LiBu-n, thereby giving $Fe(CO)_4(PPh_2Li)$; $Fe(CO)_4(PPhMeH)$ similarly afforded [8] $Fe(CO)_4(PPhMeLi)$. Alkylation of these with methylating agents gave $Fe(CO)_6(\mu$ -PPhMe) (R = Ph or Me). Lithiation of $Fe_2(CO)_6(\mu$ -PPhH)_2 which, on methylation with MeI, gave two isomers of $Fe_2(CO)_6(\mu$ -PPhMe)_2, VI. With $BrCH_2CH_2CH_2Br$, the dilithio complex afforded $Fe_2(CO)_6(PhPCH_2CH_2CH_2PPh)$.

Fe(CO)₅ and Fe₂(CO)₉ reacted with Me₂PCH₂CH₂SiX₃ (X = F or Me) giving [9] Fe(CO)₄(Me₂PCH₂CH₂SiX₃) and Fe(CO)₃(Me₂PCH₂CH₂SiX₃)₂. Analogous reactions with Me₂Si(CH₂CH₂PMe₂)₂ afforded high molecular weight species containing Fe(CO)₄ and Fe(CO)₃ groups. The species Fe(CO)₄(Me₂PCH₂-CH₂SiF₃) was stereochemically non-rigid and there was some evidence to suggest Fe \rightarrow Si π -bonding (Scheme 1).

The potentially bidentate $(R_2Sb)_2CH_2$ (R = Me or Ph) reacted [10] with $Fe(CO)_5$ giving only $Fe(CO)_4(Ph_2SbCH_2SbPh_2)$ and $(OC)_4Fe(Me_2SbCH_2SbMe_2)$ -Fe(CO)₄. The X-ray structural determination of $Fe(CO)_4[Ph_2PC=C(AsMe_2)CF_2CF_2]$ established [11] that the phosphinoarsine was monodentate and bonded to the iron via the P atom. In the complex $Fe(CO)_3(Me_2PCH_2CH_2PMe_2)$ [12] the phosphine ligand occupied an axial and an equatorial site in the trigonal

bipyramid; ¹³C NMR spectral studies revealed that the compound was stereochemically non-rigid, even at -80° .

Complexes containing N and P bridges

Treatment of $Fe_2(CO)_9$ with 1-pyrazolines afforded [13] VII which reacted with an excess of $Fe_2(CO)_9$ giving VIII (R = Ph, X = CO_2Me). The structure of one of the products of reaction between 2,3-diazabicyclo[2.2.1] hept-2-ene [14]

and iron carbonyls has been established crystallographically [15] as IX. Fe₂(CO)₉ reacted [16] with the diazepine X giving $C_{23}H_{18}N_2Fe$ (CO)₆, the structure of which is known [17] to be XI. The Fe—Fe distance is 2.39 Å, and from

Mössbauer spectral studies is was suggested that the Fe_2N_2 bonding system was represented as

The reduced diazepine XII also reacted with $Fe_2(CO)_9$ giving the same type of complex, viz. $C_{23}H_{20}N_2Fe_2(CO)_6$ whose structure may be slightly distorted relative to that of XI because of a more puckered NC₅N ring in XII relative to

that in X. $Ru_3(CO)_{12}$ reacted with X giving [16] $(C_{23}H_{18}N_2)_2Ru(CO)_3$, which did not react with PPhEt₂ and may have the structure XIII. With XII, $Ru_3(CO)_{12}$ gave $(C_{23}H_{20}N_2)Ru_3(CO)_9$, which, on the basis of spectroscopic studies, may have the structure XIV. 3,6-Diphenylpyridazine reacted with Fe₂(CO)₉ giving XV which, in turn, treated with maleic anhydride afforded XVI. The X-ray structural examination of the latter revealed an Fe—Fe separation of 2.60 Å which is longer than those in other N-bridged binuclear iron carbonyls. While XV reacted with PhC=CPh, giving the free pyridazine and Fe₂(CO)₇(PhC₂Ph)₂, MeO₂CC=CCO₂Me and its ethyl analogue afforded 1/1 adducts similar to XVI; Mössbauer spectral studies of the latter products showed that the Fe atoms were inequivalent.

 $(OC)_{3}Fe^{--Fe}(CO)_{3}$

References p. 514

Non-aromatic nitro compounds reacted [19] with $Fe(CO)_5$ or $Fe_2(CO)_9$ in refluxing diglyme giving RNHCHO and $(RNH)_2CO$ (R = n-Pr or i-Pr, c-C₆H₁₁, t-Bu or 1-adamantyl). Under milder conditions, XVII, XVIII, XIX and XX could be obtained; on heating these four compounds decomposed into RNHCHO and $(RNH)_2CO$, perhaps via Scheme 2. α,β -Unsaturated nitro compounds did not react with $Fe(CO)_5$ in diglyme.

Treatment of $Fe(CO)_5$ or $Fe_3(CO)_{12}$ with $P(CF_3)_2 H$ gave [20], at 80–90°,both $Fe_2(CO)_6[\mu-P(CF_3)_2]_2$ and $Fe_2(CO)_6[\mu-P(CF_3)_2]_2H_2$ which exists as *cis*- and *trans*-isomers, XXI. Using $P(CF_3)_2D$, the corresponding deuteride was formed. At 20°, $Fe_2(CO)_9$ afforded initially $Fe(CO)_4[P(CF_3)_2H]$ which, on heating, decomposed into XXI. Iron carbonyls reacted with $[P(CF_3)_2]_2$ giving $Fe_2(CO)_6[\mu-P(CF_3)_2]_2$, and $Fe(CO)_2(NO)_2$ afforded $Fe_2(NO)_4[\mu-P(CF_3)_2]_2$, XXII. Treatment of $[(\pi-C_5H_5)Fe(CO)_2]_2$ with $P(CF_3)_2H$ gave $(\pi-C_5H_5)$ - $Fe(CO)_2P(CF_3)_2$.

Debromination of $Fe(CO)_4$ {PF₂Br} by Ni(CO)₄ afforded [21] $Fe_2(CO)_6$ -(μ -PF₂)₂. Reaction of (π -C₅H₅)Ni(μ -CO)(μ -PPh₂)Fe(CO)₃ with RC=CR' (R = R' = Ph, CO₂Me; R = Ph, R' = H, Me, CO₂Me; R = Me, R' = H, CO₂Me) giving [22] a species formulated as XXIII; when R \neq R' two isomers were obtained. Complexes containing O, Se, S and Te donor atoms

UV irradiation of $Fe(CO)_5$ with 9,10-phenanthrenequinone (Quon), in THF, gave [23] $Fe(Quon)_3$, but in the presence of pyridine or α, α' -bipyridyl, $Fe(Quon)_2(Py)$ and $Fe(Quon)_2(Bipy)$ were formed.

Fe₃(CO)₁₂ reacted with Se₂R₂ (R = Me, Et, CF₃ or C₂F₅) giving [24] [Fe(CO)₃(μ -SeR)₂]₂; i-C₃F₇SeH afforded [Fe(CO)₃{ μ -Se(i-C₃F₇)}]₂. However, while Se₂R₂ (R = Me or Et) afforded with [(π -C₅H₅)Fe(CO)₂]₂, [(π -C₅H₅)-Fe(CO)(μ -SeR)]₂, where as with R = CF₃, C₂F₅ or C₃F₇, only the monomer (π -C₅H₅)Fe(CO)₂SeR was formed.

 $[Fe(CO)_3(\mu-SBu-t)]_2$ reacted [25] with tertiary phosphine or phosphites, L (PEt₃, PPh₃, P(OMe)₃ or P(OPh)₃) giving Fe₂(CO)₅L(μ -SBu-t)₂ or $[Fe(CO)_2L(\mu-SBu-t)]_2$, depending on reaction conditions. With the exception of L = PEt₃, the latter compounds occurred as a single isomer in solution, viz. XXIV. With *cis*-Ph₂PCH=CHPPh₂, XXV was formed, whereas with Ph₂P(CH₂)_nPPh₂ (n = 1 or 2), XXVI was produced. $[Fe(CO)_3(\mu-SPh)]_2$

behaved similarly with $Ph_2P(CH_2)_nPPh_2$, *cis*-Ph_2PCH=CHPPh_2 or $Ph_2PN(Et)$ -PPh₂, giving [26] XXVI and XXV. The thiophenate also reacted with PEt₃, PPh₃, SbPh₃ or P(OPh)₃ giving XXIV, XXVII and XXVIII. With the chelating diphosphines, $Fe_2(CO)_5(Ph_2PCH_2PPh_2)(\mu$ -SPh)₂ and XXVII were formed, in which one phosphine ligand was monodentate. The complexes $Fe(CO)_2(Diphos)(SPh)_2$ (Diphos = $Ph_2PCH_2CH_2PPh_2$ or *cis*-Ph_2PCH=CHPPh_2), XXIX, were also obtained.

Treatment of $Fe(S_2CNR_2)_2$ (R = Me or Et) with CO gave [27] cis-Fe(CO)₂-(S₂CNR₂)₂, and the structure of cis-Fe(CO)₂ [S₂CNCH(CH₂)₃CH₂]₂, XXX, References p. 514 obtained by reaction of the thiuram disulphide with $Fe(CO)_5$, has been determined crystallographically [28].

Reaction of $Fe_2(CO)_9$ with $S_2C_2(CF_3)_2$ under mild conditions afforded $[Fe(CO)_3 \{S_2C_2(CF_3)_2\}]_n$; in solution, n = 1 but in the solid state n = 2, XXXI. With phosphines and isocyanides $Fe(CO)_{3-n}L_n[S_2C_2(CF_3)_2]$ (L = (PPh₃, P(OEt)₃,

(XXXI)

CNBu-t, $CN(p-ClC_6H_4)$) was formed and with the diphosphines $Ph_2PCH_2CH_2PPh_2$ and cis-Ph₂PCH=CHPPh₂, Fe(CO)(diphos)[S₂C₂(CF₃)] was produced. Treatment of the diphosphine complexes with $NOPF_6$ afforded the diamagnetic $[Fe(NO)(diphos){S_2C_2(CF_3)_2}][PF_6]$, which could be readily reduced, chemically or voltammetrically, to the paramagnetic $(S = \frac{1}{2})$ Fe(NO)(diphos)- $[S_2C_2(CF_3)_2]$. These monomeric species probably have square pyramidal structures. Reaction of $[Fe(CO)_3 \{S_2C_2(CF_3)_2\}]_2$ with H_2S was reported [30] to provide an inorganic model for reduced 2Fe—S* iron sulphur proteins.

Tellurophene reacted [31] with $Fe_3(CO)_{12}$ giving $Fe_3(CO)_9Te_2$, a ferrocyclopentadiene complex, $C_4H_4Fe_2(CO)_6$ and XXXII. The last, on heating afforded $C_4 H_4 Fe_2(CO)_6$.

Carbonyl halides

Approximate molecular orbital calculations have been used to describe [32] the electronic structure of cis-Fe(CO)₄X₂ (X = Cl, Br or I). These calculations were used to comment on the factors influencing the CO stretching force constants. and it was shown that X could affect f(CO) by direct donation of electron density from the halogen's σ -bonding orbital to the π -orbital on *cis*-carbonyl groups.

When the red solution obtained by passing CO into RuCl_3 in refluxing ethanol was treated [33] with $\operatorname{Et}_4\operatorname{NI}$, two compounds, one $[\operatorname{Et}_4\operatorname{N}]_2[\operatorname{Ru}_2(\operatorname{CO})_4\operatorname{I}_6]$, were formed. This dimer reacted with pyridine, PPh₃ or AsPh₃ (L) giving $\operatorname{Ru}(\operatorname{CO})_2\operatorname{L}_2\operatorname{I}_2$, and with SbPh₃ giving $\operatorname{Ru}(\operatorname{CO})(\operatorname{SbPh}_3)_3\operatorname{I}_2$.

Scheme 3

The IR spectrum of $[Ru(CO)_3X_2]_2$ (X = Cl or Br) has been studied [34] in various solvents and changes of the spectra with time in CHCl₃ have been interpreted in terms of reactions involving ethanol stabiliser in the chloroform (Scheme 3).

O C X M CO X I CO L (XXXIII) References p. 514 The halide reacted [34] with pyridine or nitriles giving XXXIII and with PPh₃ giving cis-Ru(CO)₂(PPh₃)₂X₂. Bromoform solutions of $[Ru(CO)_3X_2]_2$ reacted with CO under pressure forming cis-Ru(CO)₄X₂.

Complexes of M^{II} containing Group VA donor atoms

The heats of binding of CO and CNMe (L) in $[Ru(NH_3)_5 L]^{2+}$ were calculated [35], on the basis of the reaction with Ce⁴⁺, to be -84.5 ± 0.5 and -13.5 ± 0.5 kcal/mole. Free CO does not react with Ce⁴⁺ in solution, but when coordinated to Ru^{II} is released as CO₂.

Ru₃(CO)₁₂ reacted [36] with mesotetraphenylporphine (Porph) in ethanol to give *trans*-Ru(CO)₂(Porph), and not Ru(CO)(EtOH)(Porph) as previously thought [37]. The etiophorphyrin iodine (EporphI) complex Ru(CO)(Py)-(EporphI), and its octaethylporphyrin analog, on UV irradiation, gave [38] the dimer (Py)(EporphI)Ru=Ru(EporphI)(Py). Inter- and intra-molecular site exchange of coordinate N-bases (pyridines, pyridazines and a pyrazole) in Ru(CO)(base)(Porph) (Porph = tetra(isopropylphenyl)porphyrin) has been studied [39] by total line shape analysis of the variable temperature ¹H NMR spectra of the complexes. All compounds underwent intermolecular ligand exchange, with rates of ca. 0.09 to $2 \times 10^4 \text{ sec}^{-1}$, which was independent of the concentration of the base; the rate-determining step was dissociative. The rates for intramolecular site exchange were 20 to 85 times faster than those for intermolecular exchange, but there was apparently no intramolecular ligand exchange involving 3,5-dimethylpyrazole complexes.

Carbonylation of Fe(PPh₂Me)₄H₂ gave [40] Fe(CO)(PPh₂Me)₃H₂, and this complex, like itsethyl analog and Ru(CO)(PPh₂Me)₃H₂, had the structure XXXIV at -50° ; above this temperature the complexes were stereochemically non-rigid. Mössbauer spectral studies of [Fe(L)(Et₂PCH₂CH₂PEt₂)₂H]⁺ indicated [41] that the σ -donor and π -acceptor ability of the ligand L increased in the order L = MeCN < PhCN ~ N₂ < P(OPh)₃ ~ P(OMe)₃ < CNBu-t

< p-MeC₆H₄NC < CO. The data established that N₂ is a poorer σ -donor and π -acceptor than CO, but that N₂ is a better π -acceptor but poorer σ -donor than RNC. The ruthenium and osmium hydrides and chlorides *cis*-Ru(CO)₂-(PPh₃)₂Cl₂ (*cis*-CO), Os(CO)(PPh₃)₃HCl (XXXV), Os(CO)(PPh₃)₃H₂ (XXXIV) and Os(CO)₂(PPh₃)₂H₂ (XXXVI) were prepared [42] by treating RuCl₃, OsCl₃ or OsCl₆³⁻ with ethanolic KOH or Et₃N and PPh₃. In 2-methoxyethanol, RuCl₃ and PR₃ (R = Ph, *p*-MeC₆H₄ or *p*-MeOC₆H₄) afforded Ru(CO)₃(PR₃)₂. If the reactions designed to give Ru(CO)₂(PPh₃)₂H₂ were carried out in the presence of *p*-MeC₆H₄SO₂N(Me)NO, Ru(NO)₂(PPh₃)₂ was formed. Reaction of Ru(PPh₃)₃HCl, or its P(*p*-MeC₆H₄)₃ analog, with AlEt₃ under N₂ in ether afforded [43] Ru(PPh₃)₃(N₂)H₂; the N₂ was easily displaced by CO giving Ru(CO)(PPh₃)₃H₂ (XXXIV).

Abstraction of chloride from $M(CO)(PPh_3)_2HCl$ (M = Ru or Os) in MeCN using Ag⁺ gave [44] [M(CO)(PPh_3)_2(NCMe)_2H]⁺, XXXVII. Carbonylation of this, followed by addition of PF₆⁻, gave [M(CO)_2(PPh_3)_3H]⁺, different isomers being obtained by changing the order of ligand addition. Deprotonation of the

dicarbonyl by OMe⁻ or OBu-t⁻ gave trans-M(CO)₂ (PPh₃)₃, whereas, with OEt⁻, M(CO)(PPh₃)₃H₂ was the major product. The latter may have been formed via acetaldehyde elimination from M(CO)(PPh₃)₃H(OEt). The species Ru(CO)₂-(PPh₃)₃ apparently rapidly dissociated in solution giving Ru(CO)₂(PPh₃)₂, and this reacted with H₂, C₂H₄, PhC=CPh and O₂ giving, respectively, Ru(CO)₂-(PPh₃)₂H₂, Ru(CO)₂(C₂H₄)(PPh₃)₂, Ru(CO)₂(PhC₂Ph)(PPh₃)₂ and Ru(CO)₂-(PPh₃)₂(O₂). Os(CO)₂(PPh₃)₃ dissociated less readily and Os(CO)₂(PPh₃)₂(O₂) was formed more slowly than its Ru analog.

¹³C NMR spectral studies of $\text{Ru}(\text{CO})_2(\text{PhC}_2\text{Ph})(\text{PPh}_3)_2$ and $\text{Ru}(\text{CO})_2$ structure as XXXVIII. The red solution produced by carbonylation of RuCl_3 in ethanol reacted [46] with $P(\text{CH}_2\text{SiMe}_3)_3$ giving $\text{Ru}(\text{CO})_2[P(\text{CH}_2\text{SiMe}_3)_3]_2\text{Cl}_2$ XXXIX. However, treatment of $[\text{Ru}(\text{CO})_2\text{Cl}_2]_n$ with the silvlphosphine also resulted in the formation of $\text{Ru}(\text{CO})_2[P(\text{CH}_2\text{SiMe}_3)_2\text{Me}]_2\text{Cl}_2$, (XXXIX). The

carbonylation of RuCl₃ in boiling 2-methoxyethanol afforded [47] with L (PEt₃, PPr₂Ph or PPh₃) Ru(CO)₂L₂Cl₂, XXXVIII, but under similar conditions P(p-MeC₆H₄)Bu-t₂, L', gave Ru₂(CO)₄L'₂Cl₂, XL. The Ru-Ru distance (2.63 Å) was much shorter than that found in other binuclear Ru⁰ and Ru¹ complexes. The Ru₂Cl₂ bridge had a dihedral angle of 92°, but the bridge conformation did not reflect steric effects and the remaining Ru(CO)₂Cl₂ groups were planar. Chlorination of XL in CCl₄ gave [Ru(CO)₂L'Cl₂]₂, XLI, which, on treatment with pyridine or PPhMe₂ (Q) gave Ru(CO)₂L'QCl₂, XLJI. Heating XLI alone in 2-methoxyethanol, or with L', gave XL which reacted with AgOCOMe giving [Ru(CO)₂L'(O₂CMe)]₂, XLIII. It was suggested that L' was too bulky to permit the formation of the normal six-coordinate Ru^{II} complexes, Ru(CO)₂L'₂Cl₂.

In contrast to previous reports [48], $Ru(CO)_3(PPh_3)_2$ did not react with MeI in benzene at room temperature, or even on refluxing. There was no

reaction either with THF at room temperature, but on refluxing, [PPh3Me]-[Ru(CO)₂(PPh₃)I₃] was formed [49]; this anion was also obtained by action of MeI on $Ru(CO)_2(PPh_3)_2I_2$, itself produced by treatment of $Ru(CO)_2(PPh_3)_2Cl_2$ with KI. [PPh₃Me] [Ru(CO)₂(PPh₃)I₃] reacted with PPh₃ giving Ru(CO)₂-(PPh₃)₂I₂. The cis- and trans-isomers of the latter (XXXVIII and XXXIX) could be interconverted by UV irradiation or heating; the analogous Ru(CO)2-(PPh2Me)2I2 was also prepared. RuCl3 reacted [50] with Ph2AsCH2CH2AsMe2 (Diars) giving Ru(Diars)₃Cl₂ in which the diarsine ligands were both monoand bi-dentate; carbonylation of this compound gave Ru(CO)₂(Diars)₂Cl₂, XLIV, also obtained by reaction of RuCl₃ with CO and diars in ethanol. Under similar conditions, using $Ph_2PCH_2PPh_2$ and $cis-Ph_2AsCH=CHAsPh_2$ (L-L), Ru(CO)₂(L-L)₂Cl₂, XLVI, was prepared. Carbonylation of Ru(Ph₂PCH₂PPh₂)₂Cl₂ gave trans- $[Ru(CO)(Ph_2PCH_2PPh_2)_2Cl]Cl$ and oxidation with NOBF₄ afforded [Ru(Ph2PCH2PPh2)2Cl2][BF4]. Reaction of NO or RONO with the latter afforded $[Ru(NO)(Ph_2PCH_2PPh_2)_2Cl][BF_4]_2$. Treatment of RuCl₃ in ethanol with CO and trans- β -styryldiphenylphosphine or arsine (L) gave Ru(CO)L₃Cl₂, XLVII, and further reaction with CO provided cis-Ru(CO)2L2Cl2, XLV. With $cis-\beta$ -styryldiphenylphosphine (L'), only cis-Ru(CO)₂L₂Cl₂ was formed. $Ru(NO)Cl_3$ reacted with the styryl phosphines and arsine giving $Ru(NO)L_2Cl_3$, XLVIII.

Reaction of Ru(CO)(PPh₃)₃H₂, Ru(CO)(PPh₃)₃HCl and Ru(NO)(PPh₃)₂-(OCOCF₃)₃ with RCO₂H (R = alkyl or aryl) afforded [51] Ru(CO)(PPh₃)₂-X(O₂CR) (R = alkyl or aryl; X = H or Cl). With CF₃CO₂H in benzene Os(CO)(PPh₃)₂(OCOCF₃)₂, Os(CO)(PPh₃)₃Cl(OCOCF₃) and Os(CO)₂(PPh₃)₂-(OCOCF₃)₂. Ru(NO)₂(PPh₃)₂ reacted with CF₃CO₂H giving Ru(NO)(PPh₃)₃-(OCOCF₃)₃ which was carbonylated by KOH and ethanol afforded Ru(CO)(PPh₃)₂(OCOCF₃)₂. The trifluoroacetate group in the Os complexes could be exchanged metathetically with NaOCOR (R = alkyl or aryl). In the species M(CO)(PPh₃)₂(OCOMe)₂, both mono- and bi-dentate acetate groups were present, and there was ¹H NMR spectral evidence for exchange between mono- and bi-dentate coordination.

Complexes containing a-bonded Group IIB, IIIB and IVB elements

Reaction of $Fe(CO)_3[P(OMe)_3]_2$ with HgX_2 (X = Cl, Br or I) gave [52] $Fe(CO)_3[P(OMe)_3]_2(HgX_2)$, and 1/4 (HgCl₂) and 1/2 (HgBr₂ or HgI₂) adducts were also obtained. The last two species dissociated in nitrobenzene giving $[Fe(CO)_3[P(OMe)_3]_2HgX]^+[HgX_3]^-$; similar species were obtained with $Fe(CO)_3[(PMe_3)_2]_2$.

Treatment of $Fe_2(CO)_9$ with B_6H_{10} afforded [53] μ -(OC)₄FeB₆H₁₀, in which the Fe atom is probably bridging a basal edge of a pentagonal pyramid of B₆ atoms. Reaction of Fe₃(CO)₁₂ with [Me₂NAlBr₂]₂ gave [54] XLIX, which on treatment with PBu₃ and CO₂ gave, respectively, L and LI.

When SiMe₃I was added to Na₂Fe(CO)₄, [Fe(CO)₄(SiMe₃)₂]₂ was formed [55]; this may have the structure LII or LIII. Addition of HCl afforded [Fe(CO)₃(COH)(SiMe₃)]₂, and the original tetracarbonyl could be regenerated from this by addition of SiMe₃Cl and NMe₃. Exchange of two CO groups in *cis*-Ru(CO)₄(SiCl₃)₂ occurred [56] at 25° specifically at the equatorial sites, the axial CO groups not undergoing exchange at all. It was also shown that *cis*- and *trans*-isomers of the chlorosilyl complex did not interconvert in solution or in the solid state. Thus, *trans*-Ru(CO)₄(SiCl₃)₂ was converted into the

Scheme 4

enriched CO form without proceeding via the unenriched *cis*-isomer. The mechanism of CO exchange (Scheme 4) is perhaps understood in terms of a five-coordinate bipyramidal intermediate which has equatorial SiCl₃ groups. Stereospecificity is maintained as this intermediate accepts a second CO group establishing that the initially axial and equatorial sets of CO groups are distinguished at all times in the intermediate. The behaviour of *cis*-Ru(CO)₄-(GeCl₃)₂ was similar, but Fe(CO)₄(SiCl₃)₂ did not undergo absolutely stereospecific CO exchange. The compounds Ru(CO)₄(SiMe₃)₂, Os(CO)₄(SiMe₃)₂, Os(CO)₄(SiMe₂Cl)₂ and Os(CO)₄(SnMe₃)₂ were stereochemically non-rigid [57], as established by ¹H NMR spectral studies. It seems likely that *cis/trans*-isomerism proceeds via a non-dissociative mechanism, perhaps involving silyl or stannyl group migration through an acyl intermediate. Reaction of Na₂Fe(CO)₄

and $Fe_2(CO)_9$ with LIV and LV afforded [58] organometallic oils which could not be adequately characterised but contained Fe and Ge. The structures of the *cis*- and *trans*-isomers of $Ru(CO)_4(GeCl_3)_2$ have been elucidated crystallographically [59]; the Ru—Ge distances in both complexes were 2.48 Å, and from the Ru—C distances it was apparent that the GeCl₃ group had an unusual π -bonding capability.

The crystal structure determination of $[Fe(CO)_4SnMe_2]_2$, LVI, established [60] that the Fe–Sn distances (2.65 Å) corresponded to the sum of covalent radii of Fe^{II} and Sn^{IV}; the Sn–Fe–Sn angle was 77°, and the Fe–Fe separation 4.14 Å.

Metal carbonyl clusters

The two Fe–Fe distances in LVII, 2.68 and 2.87 Å, were determined [61] by X-ray crystallography. Fe(CO)₅ reacted with $[(\pi - C_5H_5)Mo(CO)_3]^-$ in diglyme giving [62] [Fe₅(CO)₁₄C]²⁻, LVIII, isolated as the Me₄N⁺ salt. This anion could also be obtained [63], together with [Fe₆(CO)₁₆C]²⁻, from the reaction

of $Fe(CO)_5$ with $[Mn(CO)_5]^-$. The pentanuclear species may be related to $Fe_5(CO)_{15}C$ [64].

The X-ray crystallographic structural determination of α -Ru₄(CO)₁₃H₂ revealed [65] that eleven of the CO groups were terminally bound, and the other two formed asymmetric bridges between two Ru atoms each. There were two different metal-metal distances, two Ru-Ru separations being 2.93 Å and four being 2.78 Å; it was suggested that the H atoms bridged the two long Ru-Ru bonds. Reaction of $Ru_3(CO)_{12}$ with NO in benzene at 80° gave [66] $\operatorname{Ru}_{3}(\operatorname{CO})_{10}(\operatorname{NO})_{2}$, and this further reacted with NO giving $[\operatorname{Ru}(\operatorname{CO})_{1,3}(\operatorname{NO}_{2})_{1,6}]_{n}$ $Ru_4C_{12}N_2O_{13}$ and perhaps also $Ru_4(CO)_{12}(N_2O)$. $Os_3(CO)_{12}$ also reacted with NO giving $Os_3(CO)_{10}(NO)_2$. The structure of the ruthenium nitrosyl, LIX, has been elucidated; the direct Ru-Ru bond distances were 2.87 Å, and the $Ru(\mu-NO)_2$ —Ru separations were 3.15 Å; $Os_3(CO)_{10}(NO)_2$ was isostructural. Pyrolysis of $Ru_3(CO)_{12}$ in a sealed tube at ca. 150° gave $Ru_6(CO)_{17}C$ and undecomposed dodecarbonyl [67]. However, similar treatment of $Os_3(CO)_{12}$ at 195-200° afforded, in addition to starting material, $Os_4(CO)_{13}$, $Os_5(CO)_{16}$), $Os_6(CO)_{18}$ (which is probably an octahedral cluster of $Os(CO)_3$ groups), $Os_7(CO)_{21}$, $Os_8(CO)_{23}$, and $Os_5(CO)_{15}C$; $Os_6(CO)_{17}C$ was not detected.

Reaction of Fe₂(CO)₉ with $[(\pi-C_5H_5)Mo(CO)_3]^-$ at room temperature gave [68] $[Fe_2(\pi-C_5H_5Mo)_2(CO)_{10}]^{2-}$, LX.

Fe₂(CO)₉ reacted with PtL₄, PtL₃ or PtL₂(stilbene) (L = PPh₃, PPh₂Me, PPhMe₂, PMe₃ or AsPh₃) giving [69] LXI, LXII (also obtained where L = PPh(OMe)₂, P(OPh)₃ or Ph₂QCH₂CH₂QPh₂, Q = P or As), and LXIII. Some of these compounds could also be obtained [70] using Fe₃(CO)₁₂, and the structures of Fe₂(CO)₈[Pt(CO)(PPh₃)] [70] (see LX) and Fe(CO)₄-[Pt₂(CO){P(OPh)₃}] [71], LXIV, have been determined. In the former the two independent Pt—Fe bond distances were significantly different, reflecting, perhaps, the high *trans* influence of PPh₃ relative to CO. The general stereochemistry of the cluster suggested that the bonding involved [Pt(CO)(PPh₃)]²⁺ and two [Fe(CO)₄]⁻ groups. In the latter, the metal—metal bonds were shorter than expected for electron-pair bonds, suggesting Fe—Pt bond multiplicity (the compound does not obey the rare gas rule).

(LXVIII)

Ru₃(CO)₁₂ also reacted [72] with PtL₄, PtL₃ or PtL₂(stilbene) giving Ru₃(CO)_{12-n}L_n (n = 1, 2 or 3) and LXV (L = PPh₃, PPh₂Me, PPhMe₂, PPh(OMe)₂ or AsPh₃), LXVI (L = PPhMe₂), LXVII (L = PPh(OMe)₂ or P(OPh)₃) and LXVIII. Reaction of Os₃(CO)₁₂ with Pt(PPh₂Me)₄ gave Os₃(CO)₈(PPh₂Me)₄ and with Pt(PPh₃)₂(stilbene), Os₃(CO)_{12-n}(PPh₃)_n (n = 1, 2 or 3). With Os(CO)₄H₂, these Pt compounds afforded OsPt₂(CO)₅L₃

(LXXI)

(LXXII)

References p. 514

 $(L = PPh_3 \text{ or } PPh_2Me)$ and $Os_2Pt(CO)_7(PPh_2Me)_3$. Minor products of the reaction between $Os_3(CO)_{12}$ and $Pt(PPh_3)_2(\text{stilbene})$ were $Os_2(CO)_6[(C_6H_4)-PPh_2]_2$, with structure either LXIX or LXX, and $Os(CO)_x(PPh_3)_y(PPh_2)$ (x = 6 or 5; y = 1 or 2). Treatment of $Os(CO)_4H_2$ with $Pt(PPh_3)_2(C_2H_4)$ gave $Os(CO)_3(PPh_3)H_2$, $OsPt_2(CO)_5(PPh_3)_3$, LXXI and $[OsPt(CO)_4(PPh_3)H]_2$, LXXII. In the last, the H atoms may either bridge the two Pt atoms or may be bonded terminally to each of them. All of the reactions occurred via oxidative addition in which the Pt moiety was inserted into Ru—Ru as Os—Os bonds. This was then probably followed by disproportionation and elimination of an $M(CO)_4$ (M = Ru or Os) group. The formation of Pt_2M clusters was envisaged as a second series of insertion and disproportionation reactions.

The reactions between $M_3(CO)_{12}$ (M = Ru or Os) and $[M'(CO)_5]^-$ (M' = Mn or Re) were complex [73] and the nature of the products was dependent on the solvent and temperature of the reactions. The behaviour of $Os_3(CO)_{12}$ with $[M'(CO)_5]^-$ is summarised in Scheme 5. The structure of LXXIII is analogous to that of $FeOs_2(CO)_{12}$ [74], and the overall symmetry of $MnOs_2(CO)_{12}H$ was low, the structural assignment being impossible. There are two possible structures

for M'Os₃(CO)₁₆H, LXXIV and LXXV. ReOs₃(CO)₁₅H, LXXVI, is probably electronically similar to $[\text{Re}_4(\text{CO})_{16}]^{2-}$ [75], and so may contain a double triangulated ReOs₃ nucleus; the Mn analogue could not be prepared. In M'Os₃(CO)₁₃, LXXVII, both terminal and bridging CO groups are present—the compound may be analogous to $[\text{Fe}_4(\text{CO})_{13}]^{2-}$ [76]. The H atoms may be located around the edges of the basal Os₃ triangle or in the three faces of the tetrahedron linking M' to the Os atoms. The reactions of Ru₃(CO)₁₂ with $[M'(\text{CO})_5]^-$ are summarised in Scheme 6. This carbonyl was much more readily

$$[\operatorname{Mn}(\operatorname{CO})_{5}]^{-}; \operatorname{THF}; 20^{\circ}; 28 \operatorname{h} \qquad [\operatorname{Ru}_{3}(\operatorname{CO})_{11}\operatorname{H}]^{-}$$

$$[\operatorname{Mn}(\operatorname{CO})_{5}]^{-}; \operatorname{THF} \operatorname{reflux}; \operatorname{H}^{+}; 4 \operatorname{h} \qquad \left(\begin{array}{c} \operatorname{Ru}_{4}(\operatorname{CO})_{12}\operatorname{H}_{4} \\ \operatorname{Ru}_{4}(\operatorname{CO})_{13}\operatorname{H}_{2} \\ \operatorname{Ru}_{6}(\operatorname{CO})_{13}\operatorname{H}_{2} \\ \operatorname{Ru}_{6}(\operatorname{CO})_{18}\operatorname{H}_{2} \end{array}\right)$$

$$\operatorname{Ru}_{3}(\operatorname{CO})_{12} \qquad \left(\begin{array}{c} \operatorname{Re}(\operatorname{CO})_{5} \\ \operatorname{I}^{-} \\ \operatorname{THF}; 20 \operatorname{min}; 20^{\circ} \end{array}\right) \left[\operatorname{ReRu}_{3}(\operatorname{CO})_{16} \right]^{-} \xrightarrow{\operatorname{H}^{+}} \begin{cases} \operatorname{Re}_{2}\operatorname{Ru}(\operatorname{CO})_{12}\operatorname{H}_{2} \\ \operatorname{Re}_{2}\operatorname{Ru}_{2}(\operatorname{CO})_{16}\operatorname{H}_{2} \end{cases}$$

Scheme 6

attacked than its Os analog. $[Ru_3(CO)_{11}H]^-$ is probably similar to $[Fe_3(CO)_{11}H]^$ and, on acidification, gave an unstable compound (dihydride?) which decomposed to $Ru_3(CO)_{12}$. $Ru_6(CO)_{18}H_2$ is an octahedral cluster with six $Ru(CO)_3$ groups, and in which the H atoms bridge three metal atoms in or above opposite faces of the octahedron [77]; $[ReRu_3(CO)_{16}]^-$ is probably closely related to $M'Os_3(CO)_{16}H$, LXXIV or LXXV.

Ethylene reacted with α -Ru₄(CO)₁₂H₄ giving [78] α -Ru₄(CO)₁₃H and Ru₃(CO)₉(CMe)H₃, LXXIX. The α -hydrides Ru₄(CO)₁₂H₄ and Ru₄(CO)₁₃H₂

reacted with 1,5-cyclooctadiene (C_8H_{12}) giving [79] $Ru_3(CO)_9(C_8H_{12})H_2$, LXXX, $Ru_3(CO)_9(C_8H_{11})H$, $Ru_4(CO)_{11}(C_8H_{10})$, LXXXI, $Ru_4(CO)_{12}(C_8H_{12})$, $Ru_4(CO)_{12}(C_8H_{10})$, unreacted dodecarbonyl, 1,3- C_8H_{12} and C_8H_{14} . The structure of LXXXI has been determined [80] and bears similarities to $Co_4(CO)_{10}(EtC_2Et)$ [81]. Thus the four Ru atoms have a butterfly conformation, and the C_1-C_2 bond is "acetylenic", forming two Ru-C " σ -bonds", Ru_1-C_2 and Ru_2-C_1 (2.16 Å) and two " μ -bonds" involving Ru_3 and Ru_4 (2.21 Å). The Ru-Ru distances averaged 2.74 Å except that of Ru_1-Ru_2 which is 2.82 Å; the dihedral angle between the two trimetal planes is 112°. By heating $M_3(CO)_{12}$ (M = Ru or Os) with cyclooctene, $M_3(CO)_9(C_8H_{12})H_2$ (LXXX, M = Ru) was obtained, and $Ru_3(CO)_9(C_8H_{11})H$, when heated under 1 atm. of H_2 , also gave LXXX. The compound LXXX was stereochemically non-rigid (Scheme 7). Treatment of $Ru_3(CO)_{12}$ with bicyclo[3.2.1]-octa-2,6-diene gave [82] the stereochemically non-rigid LXXXII.

With RC=CH, $Ru_3(CO)_{12}$ gave [83] LXXXIII (R = t-Bu or Ph), which is similar to $Fe_3(CO)_9C_2Ph_2$ [84]. With PhC=CPh, in alkaline solution, $Ru_3(CO)_{12}$

Scheme 7

afforded [85] $\operatorname{Ru}_3(\operatorname{CO})_9(\operatorname{C}_2\operatorname{Ph}_2)H$, probably LXXXIV, and further reaction of this with $\operatorname{PhC} \equiv \operatorname{CPh}$ gave LXXXV (proposed structure). The general reactions are summarised in Scheme 8. $\operatorname{Ru}_3(\operatorname{CO})_{12}$ also reacted with di- or tetra-phenylbuta 1,3-diene giving [86] orange isomers of $\operatorname{Ru}_3(\operatorname{CO})_8 \operatorname{L}_2$ (L = C₂Ph₂ or C₂HPh); such species may also have been produced in the reactions of $\operatorname{Ru}_3(\operatorname{CO})_{12}$ with PhC \equiv CPh [87]. Also obtained from the reactions of the arylbutadienes were $\operatorname{Ru}_3(\operatorname{CO})_9(\operatorname{C}_7\operatorname{H}_{12})$, $\operatorname{Ru}_3(\operatorname{CO})_9(\operatorname{C}_6\operatorname{H}_{10})\operatorname{Ru}_4(\operatorname{CO})_{12}\operatorname{H}_4$, $\operatorname{Ru}_4(\operatorname{CO})_{13}\operatorname{H}_2$ and $\operatorname{Ru}_3(\operatorname{CO})_9\operatorname{C}_4\operatorname{H}_4\operatorname{Ph}_2$. All CO groups in these compounds are terminal. The ¹H and NMR spectra of $\operatorname{Ru}_3(\operatorname{CO})_9(\operatorname{C}_6\operatorname{H}_{10})$ were consistent [88] with the presence of a Ru—H bond and a π -1,3-methylethylallyl group coordinated, as in LXXXVI, so that the compound must be reformulated as $\operatorname{Ru}_3(\operatorname{CO})_9(\operatorname{C}_6\operatorname{H}_9)H$. The

Scheme 8

compound LXXXVI was also obtained from *cis*, *trans*- or *trans*, *trans*-hexa-2,4-diene and $Ru_3(CO)_{12}$, and its structure has been confirmed crystallographically; it is comparable with $Ru_3(CO)_9(C_{12}H_{15})H$ [89].

(LXXXVI)

Arylacetylenes also reacted [90] with $Os_3(CO)_{12}$ giving $Os_3(CO)_8L_2$ (L = C_2Ph_2 , $C_2(p-ClC_4H_4)_2$ or $C_2(p-MeC_6H_4)$. These compounds contained an Os—H bond and the structure LXXXVII was proposed. However, crystallographic studies indicated [91] that the molecule had an overall structure LXXXVIII in which the Os_1 — Os_3 and C_1 — C_2 — C_3 — C_4 bonds were mutually perpendicular. There was indication of a bond between Os_2 and the phenyl ring A (C_{10}) (Os_2 — C_1 2.18 Å). The Os_1 — C_1 or C_4 , Os_3 — C_1 or C_4 , C_1 — C_2 and C_3 — C_4 distances were consistent with single bonds while C_2 — C_3 appeared to be a double bond. It was implied that there was a μ -bond involving C_2 — C_3 and Os₁ and Os₃. The intermetallic distances were: Os₁–Os₂ 2.87 Å, Os₁–Os₃ 2.75 Å and Os₂–Os₃ 2.94 Å. The complexes Os₃(CO)₈L₂ reacted further with CO, PF₃, PPh₃, AsPh₃ or SbPh₃(Q) affording Os₃(CO)₈L₂Q (Scheme 9).

$$Os_{3}(CO)_{8}L_{2}Q \xrightarrow{CO} Os_{2}(CO)_{6}L_{2} + Q$$

$$\xrightarrow{+Q}_{heat}$$

$$Os_{3}(CO)_{12} \xrightarrow{L} Os_{3}(CO)_{8}L_{2}$$

$$\xrightarrow{+CO}_{heat} \xrightarrow{+CO}_{Os_{3}(CO)_{9}L_{2}} \xrightarrow{CO} Os_{2}(CO)_{6}L_{2}$$

$$L = Ph_{2}C_{2}; (p \cdot ClC_{6}H_{4})_{2}C_{2}; (p \cdot MeC_{6}H_{4})_{2}C_{2}$$

$$Q = PF_{3}, PPh_{3}, AsPh_{3}, S_{6}Ph_{3}, CO$$

Scheme 9

Reaction of $Fe_3(CO)_{12}$ with $Ph_2MC \equiv CCF_3$ (M = P or As) gave LXXXIX which afforded [92], with P(OR)₃ (R = Me or Et) $Fe_3(CO)_x[Ph_2PC_2(CF_3)]_2$ -[P(OR)₃]. The Fe_3 —C (1.96 Å) and C—C (1.43 Å) distances within the ferrocyclopentadiene ring were similar to those found in $Fe_2(CO)_6[C_4Me_2(OH)_2]$

and $Fe_3(CO)_6(C_2Ph_2)$ [93]. The Fe_2 — Fe_3 , Fe_1 — Fe_2 and Fe_1 — Fe_3 distances were 2.55, 3.50 and 4.98 Å, respectively. The molecule was two electrons short of the rare gas configuration.

References p. 514

Treatment of $\operatorname{Ru}_3(\operatorname{CO})_{12}$ with cyclododeca-1,5,9-triene isomers afforded [94] $\operatorname{Ru}_3(\operatorname{CO})_8(\operatorname{C}_{12}\operatorname{H}_{15})\operatorname{H}$, XC, $\operatorname{Ru}_3(\operatorname{CO})_9(\operatorname{C}_{12}\operatorname{H}_{17})\operatorname{H}$, $\operatorname{Ru}_2(\operatorname{CO})_{17}(\operatorname{C}_{12}\operatorname{H}_n)\operatorname{H}(n)$ probably 17) and $\operatorname{Ru}_4(\operatorname{CO})_{10}(\operatorname{C}_{12}\operatorname{H}_{16})$, XCl. XC reacted with $\operatorname{Ru}_3(\operatorname{CO})_{12}$ giving XCl, but did not react with Fe₂(CO)₉. XC also reacted with L(P(OMe)₃, PPhMe₂ or P(OCH₂)₃CEt) giving $\operatorname{Ru}_3(\operatorname{CO})_{9-n}L_n(\operatorname{C}_{12}\operatorname{H}_{15})\operatorname{H}(n = 1, 2 \text{ or } 3)$.

Reaction of $Os_3(CO)_{12}$ with PPh₃ in a molar ratio of 1/2 [95] gave a mixture of nine compounds, $Os_3(CO)_8(PPh_2)(C_6H_5)(PPhC_6H_4)$, XCII, $Os_3(CO)_7(PPh_2)_2$ - (C_6H_4) , XCIII, $Os_3(CO)_8'(PPh_3)(PPh_2)''$, $Os_3(CO)_8'(PPh_3)_2''H$, XCIV, $Os_3(CO)_9$ - $(PPh_3)(PPh_2C_6H_4)H$, XCV, $Os_3(CO)_9'(PPh_3)_2''H$, XCVI and $Os_3(CO)_{12-n}(PPh_3)_n$ (n = 1, 2 or 3); also described were $Os_3(CO)_8[P(C_6H_4Me)_3]_2(C_6H_4Me)$ - $[P(C_6H_4Me)(C_6H_3Me)]$, $Os_3(CO)_7(AsPh_2)_2(C_6H_4)$, probably similar to XCIII, and $Os_3(CO)_9(PPh_3)_3H^+$. Thermal decomposition of $Os_3(CO)_{10}(PPh_3)_2$ gave

Os₃(CO)₇(PPh₂)[PPh₂(C₆H₄C₆H₃)], XCVII. The structures of those numbered compounds have been determined crystallographically [95, 96], and all contain Os₃ triangles. The coordination of the benzyne ligands in XCIII and XCVI is very similar; XCVII may be regarded as being formed by intracluster oxidative addition of benzyne to a β -CH bond of terminal PPh₃ in XCVI. The mean C--C bond length in the coordinated benzyne ligands in XCII, XCVI and XCVII is 1.42 Å, and the dihedral angle between the Os₃ plane and the aryne ligand plane is 69 ± 3°. XCIV exhibits metallation of a β -CH bond in PPh₃ by two adjacent Os atoms, and, as such, may be regarded as a precursor of XCII, XCIII and XCV. The Os--C-Os bond angle (74°) was smaller than that observed in XCII. In XCVI and XCVII, the H atom may be terminally bound to the "top" Os atom, whereas in XCIV it presumably bridges the "bottom" Os atoms.

Me groups, Os atoms and part of C₆H₄ ring omitted for clarity

Scheme 10

 $Os_3(CO)_{12}$ reacted with PPhMe₂ in refluxing toluene [97] giving $Os_3(CO)_{12-n}(PPhMe_2)_n$ (n = 1, 2 or 3). Heating these in refluxing *n*-nonane gave $Os_3(CO)_9(PMe_2)(C_6H_4)H$ and $Os_3(CO)_7(PMe_2)_2(C_6H_4)$, XCVIII. The latter has a structure analogous to XCIII, and is stereochemically non-rigid (Scheme 10); the former behaves similarly. Reaction between *o*-vinylphenyldiphenylphosphine (L) and $Os_3(CO)_{12}$ gave [98] $Os_3(CO)_8L_2$ and no $Os(CO)_3L$. The former was shown, by ¹H NMR spectroscopy, to be $Os_3(CO)_8(Ph_2PC_6H_4C_2H)H$, the vinyl group having been dehydrogenated to give an acetylenic ligand bridging the three Os atoms. $Os_3(CO)_{12}$ reacted with

 C_2H_4 in n-octane at 125° giving $Os_3(CO)_9(C_2H_2)H_2$, possibly XCIX, and with benzene at 180° giving $Os_3(CO)_9(C_6H_4)H_2$ (this may contain *o*-phenylene bonded to an Os_3 triangle via two C atoms). Reaction with H_2S in *n*-octane at 125° gave $Os_3(CO)_9(S)H_2$.

The structure proposed [99] for $[(\pi - C_5H_5)Co(CO)]_2(\mu - GeCl_2)_2 Fe(CO)_4$, C, has been shown crystallographically to be Cl [100].

The reaction of Fe₃(CO)₉XY (X, Y = S, Se or Te; X \neq Y) with L (P(OPh)₃ or AsPh₃) obeyed [101] a two-term rate law for substitution. Iron carbonyls reacted [102] with Co₂(CO)₆(SR)₂ (R = C₆F₅ or C₆Cl₅) giving FeCo₂(CO)₉S,, also obtained [103] in the reaction of Fe₂(CO)₆S₂ with Co₂(CO)₈. However, reaction of Co₂(CO)₈ with Fe₂(CO)₆(SR)₂ gave only Co₄(CO)₁₂. Fe₃(CO)₁₂ reacted with Co₆(CO)₁₁(SEt)₄S and Co₃(CO)₄(SEt)₅ giving, under UV irradiation, FeCo₂(CO)₉S and syn- and anti-Fe₂(CO)₆(μ -SR)₂.

 $\operatorname{Ru}_3(\operatorname{CO})_{12}$ reacted [104] with XO_3^- (X = S, Se or Te) in alkaline solution giving an anion which, on acidification, gave $\operatorname{Ru}_3(\operatorname{CO})_9(X)H_2$, either CII or CIII. When $\operatorname{Ru}_3(\operatorname{CO})_{12}$ was refluxed in CS_2 , [$\operatorname{Ru}(\operatorname{CO})_3(\operatorname{CS})$]_n was formed, and with cyclohexene sulphide, [$\operatorname{Ru}(\operatorname{CO})_3(\operatorname{C}_6H_{10})S$]_n was produced.

Metal trifluorophosphine complexes

Fe(PF₃)₅ reacted with PF₃ and H₂ under UV irradiation giving [105, 106] the thermally and oxidatively stable Fe(PF₃)₄H₂. The compound was stereochemically non-rigid, existing as octahedral *cis*- and *trans*-isomers at low temperatures. Deprotonation by KOBu-t gave K[Fe(PF₃)₄H] and K₂[Fe(PF₃)₄];

the former species, and its analogs $[M(PF_3)_4H]^-$ [107], M = Ru or Os, was also stereochemically non-rigid having distorted trigonal bipyramidal structures at low temperatures. Fe(PF₃)₄H₂ reacted with EtSH and I₂ giving [105] CIV and CV, respectively; under UV irradiation, it reacted with isoprene giving the diene complex Fe(C₅H₈)(PF₃)₃.

Ru₃(CO)₁₂ reacted with PF₃ at high pressures giving [108] the stereochemically non-rigid Ru(PF₃)_x(CO)_{5-x} (x = 5, 4 or 3), and traces of Ru(CO)₃(PF₃)₂ and Ru(CO)₄(PF₃). At high CO pressures and moderate PF₃ pressures, Ru₃(CO)_{12-y}(PF₃)_y (y = 0-6) was produced.

Metal isocyanide complexes

Deoxygenation of a CO group in $Fe(CO)_5$ by $Ph_3P=NC_6H_4Me$ gave [109] $Fe(CO)_4[CN(C_6H_4Me)]$, $Fe(CO)_3[CN(C_6H_4Me)]_2$ and Ph_3PO ; the proposed mechanism of reaction is summarised in Scheme 11. With $Fe_2(CO)_9$, the phosphineimine gave the same isocyanides together with urea, oxan de and hydrazobenzene derivatives. Fe, Ru and Os¹¹ hexacyanides reacted 10] with acetone and $[Et_3O][BF_4]$ giving $[M\{C\equiv NCMe_2CH_2COMe\}_6][BF_4]$ nd similar species were obtained with methylethylketone, cyclohexanone ar. acetophenone (the latter formed only $[Fe\{C\equiv NCMePhCN_2COPh\}_5(CN)][L_4]$.

Scheme 11

Addition of CNEt to $\operatorname{RuL}_n X_2$ (L = PPh₃ or SbPh₃; n = 3 or 4; X = Cl or Br) and to $\operatorname{Ru}(\operatorname{AsPh}_3)_2(\operatorname{MeOH})X_3$ (X = Cl or Br) gave [111] trans- $\operatorname{Ru}(\operatorname{CNEt})_2$ -L₂X₂, CVI. The trans-isomer was converted to the cis-form, CVII, by heating.

Correlation has been made [112] of isomer shift and quadrupole splittings obtained from the Mössbauer spectra of $[Fe(CNAr)_5(SnCl_3)]^+$, trans-Fe[CN- $(p-MeC_6H_4)]_4Cl_2$, its SnCl₃ derivative and $[Fe\{CN(p-MeC_6H_4)\}_5(SnCl_3)]^+$ and their electronic spectra and Fe 2p and 3p core electron binding energies [113].

Reactions of $[Fe(CNMe)_6]^{2+}$ with the hydrazines RNHNHR (R = H, Me or Ph) gave [114] CVIII (the two most probable configurations are shown). Addition of ethanol to $Ru(CO)(CNR)(PPh_3)_2(O_2)$ (R = p-MeC₆H₄) gave [115] CIX which, on treatment with HCl gave $Ru(CO)[CH(NHR)](PPh_3)_2Cl(O_2CMe)$ which contained a coordinated carbene ligand. Reaction of CIX with NaS₂CNEt₂ gave $Ru(CO)(PPh_3)_2[CH(=NR)](S_2CNEt_2)$, analogous to CIX with acetate replaced by dithiocarbamate. This same compound could be obtained by addition of NaS₂CNEt₂ to $Ru(CO)(CNR)(PPh_3)_2(OClO_3)$.

Metal nitrosyl complexes

An excellent review of transition metal nitrosyls, their structures, spectral properties and reactions, has recently been published [116].

Addition of NOPF₆ to $Fe(CO)_{3}L_{2}$ (L = PPh₃, PPh₂Me, PPhMe₂, PEt₃, P(c-C₆H₁₁)₃, $\frac{1}{2}Ph_{2}PCH_{2}CH_{2}PPh_{2}$, P(OMe)₃ or P(OPh)₃) gave [117] [Fe(CO)₂(NO)L₂]⁺ which reacted further with L (P(OMe)₃, PPh₂Me or PPhMe₂) and with Ph₂PCH₂CH₂PPh₂ giving [Fe(CO)(NO)L₃]⁺ and [Fe(NO)-(Ph₂PCH₂CH₂PPh₂)₂]⁺, respectively. The latter was also obtained by reaction of Fe(Ph₂PCH₂CH₂PPh₂)₂HCl and p-MeC₆H₄SO₂N(Me)NO in the presence of NaBH₄. Addition of OMe⁻ to [Fe(CO)₂(NO)(PPh₃)₂]⁺ or its diphos analog gave Fe(CO)(NO)(PPh₃)₂(CO₂Me) and Fe(CO)(NO)(Ph₂PCH₂CH₂PPh₂)-(CO₂Me); there was no evidence for methoxide attack upon coordinated NO.

The structure of $Ru(NO)(PPh_3)_3H$, CX, has been determined crystallographically [118]. The Ru atom was displaced by 0.55 Å out of the trigonal plane of the PPh₃ groups towards the NO; the Ru–N–O bond angle was 176°. Molecular oxygen reacted with Ru(CO)(NO)(PPh₃)₂NCS giving [119] Ru(NO)(PPh₃)₂(O₂)NCS, CXI, and may be displaced and replaced by CO. The carbonyl and its analog Ru(NO)(PPh₃)₂(O₂)NCS, were efficient catalysts for the homogeneous oxidation of PPh₃ to Ph₃PO, the rate being proportional to the increase of the PPh₃ concentration. The rate also depended on the partial pressure of O₂ for the carbonyl but not for CXI. The proposed mechanism is summarised in Scheme 12.

Scheme 12

Borohydride reduction of $Os(CO)(NO)(PPh_3)_2Cl$ gave [120] Os(CO)-(NO)(PPh_3)₂H, which reacted with HX (X is non-coordinating) in the presence of CO giving $[Os(CO)_2(NO)(PPh_3)_2]X$, CXII. Addition of L (PPh_3, PPh_2Me, $\frac{1}{2}Ph_2PCH_2CH_2PPh_2$ or p-MeC₆H₄NC) to CXII afforded $[Os(CO)(NO)(PPh_3)_2L]^+$ and addition of excess of RNC in the presence of O₂ gave $[Os(CO)(CNR)_2-$ (PPh_3)₂(NO₂)]⁺. Treatment of CXII with X⁻ (coordinating) gave Os(CO)(NO)-(PPh_3)₂X and Os(CO)₂(PPh_3)₂X₂. The structure of CXII has been determined, and the Os-N-O and Os-C-O bond angles were essentially linear. The Os-NO bond length (1.89 Å) was quite long, linear M-NO groups usually having shorter M-N bond distances.

The crystal and molecular structures of $[NH_4]_2[Ru(NO)Cl_5]$ [121] and its K⁺ analog [122], established that the $[Ru(NO)Cl_5]^{2-}$ was a slightly distorted octahedron. The Ru–N–O group was essentially linear (ca. 177°) and the Ru–N(NO) distance was 1.74-1.75 Å. It was suggested that the nitrosyl group was bonded as NO⁺. The Ru–Cl bond length *trans* to NO was shorter than the others in the ion. The electronic and magnetic circular dichroism spectra of $[Ru(NO)(NH_3)_4L] X$ (L = Cl, Br, NCO, N₃, OH, NH₃ or OCOMe) have been assigned [123] and interpreted. It was suggested that the compounds contain the {Ru^{III} –NO⁰} group rather than {Ru^{III}–NO⁺}. The complex [Ru(NO)-(Bipy)₂X]²⁺ (X = Cl or NO₂) reacted [124] with N₃⁻ in the presence of solvent,

S, giving $[Ru(Bipy)_2X(S)]^+$. N₂ and N₂O. The halides $M(NO)(QR_3)_2X_3$ (M = Ru or Os; X = Cl or Br; Q = P or As; R = alkyl. aryl or mixed species) were conveniently prepared [125] by reaction of MX₃ with p-MeC₆H₄SO₂N(Me)NO or pentyl nitrite with a solution of QR₃ in boiling alcohols. Addition of an excess of Lil to these mixtures afforded $M(NO)(QR_3)_2I_3$. The paramagnetic $Ru(NO)(PPh_3)_2Cl_2$ was also detected as a minor product during the formation of Ru(NO)(PPh₃)₂Cl₃. Reaction of azide ion with trans-[Ru(NO)(Diars)₂Cl]Cl₂ (Diars = o-phenylenebis(dimethylarsine)) afforded [126] trans-[Ru(Diars)₂(N₃)Cl] together with N₂ and N₂O. The complex containing ¹⁵NO eliminated nitrous oxide as ${}^{14}N_2O$ and ${}^{15}N_2O$ in equal amounts. The IR spectra of trans- $[Ru(NO)(Diars)_2X]^{2+}$ (X = Cl or I), trans- $[Ru(N_2)(Diars)_2Cl]^+$ and trans- $[Ru(CO)(Diars)_2Cl]^+$ were compared [127] and it was indicated that NO was a better π -acceptor in these complexes than CO or N₂. The magnetic susceptibilities, ESR and Mössbauer spectra of trans-[Fe(NO)(Diars), X]⁺ (X = halide) have been measured [128]. The compound had one unpaired electron and ESR spectral parameters indicated that the Fe^{III} ion existed in a rhombic field.

Reaction of $Fe(NO)(S_2CNEt_2)_2$ with impure NO (containing ca. 3% NO₂) or pure NO₂ gave [129] $Fe(NO)(S_2CNEt_2)_2(NO_2)$; with pure NO no reaction was observed. Oxidation of $Fe(NO)(S_2CNEt_2)_2$ by halogen afforded $Fe(NO)(S_2CNEt_2)_2X$ (X = Br or I) in which the NO and X groups were mutually *cis* (also when X = NO₂). Improved syntheses of *cis*-Fe(CO)₂-(S₂CNR₂)₂ (R = Me or Et) were also reported, and reaction of [Fe(CO)₃-(μ -SMe)]₂ with NaS₂CNEt₂ in the presence of some I₂ afforded one isomer (precise structure unknown) of [Fe(CO)₂(S₂CNEt₂)(μ -SMe)]₂; the last had *cis*-CO and bidentate dithiocarbamate groups.

Phosphines, $Ph_2PCH_2CH_2PPh_2$ and $AsPh_3$ displaced [130] CO from $Fe(CO)(NO)_2L$ (L = tertiary phosphine) by an associative mechanism, the order of reactivity being $CO > AsPh_3 \ge P(OPh)_3 > P(OBu)_3 > PPh_3 > PBu_3$. The mechanistic pathways are illustrated in Schemes 13 and 14; the former relates to reaction of diphos when L = PPh_3 or PBu_3, the latter to all other ligands.

The complexes $Fe(NO)_2(Bipy)$, $Fe(NO)_2(o-phen)$ and CXIII were polarographically oxidised [131] in one step giving $[Fe(NO)_2(N-N)]^+$ (N-N = heterocyclic ligand) and reduced in two steps giving mono- and di-anions. It was suggested that the unpaired electron in $[Fe(NO)_2(N-N)]^-$ was located in an orbital of π^* (N-N) character, whereas in the monocation it was localised in an orbital of σ -character. The Ru^{II} carbonyl mesoporphyrin (IX) dimethylester (Porph) reacted with NO affording Ru(NO)₂(Porph).

453

Scheme 14

The crystal and molecular structure of $[Ru(NO)_2(PPh_3)_2Cl][PF_6]$, CXIV, has been determined [133]. The molecule was essentially square pyramidal, the apical Ru–N–O bond angle being 138°, the Ru–N and N–O bond distances 1.85 and 1.17 Å. The basal Ru–NO group was essentially linear (178°), and the Ru–N and N–O distances 1.74 and 1.16 Å. During recrystallisation of Ru(NO)(PPh₂Me)₃H [134], the dimer $[Ru(NO)(PPh_2Me)(PPh_2)]_2$, CXV, was formed [135]. CXV was also obtained in the reaction between Ru(NO)(PPh₂Me)₂Cl₃ and PPh₂H with Zn/Cu couple, together with the tetranuclear CXVI. In the former the Ru–Ru distance was short (2.63 Å), indicating a bond order of nearly 2, and the Ru–N distance, 1.70 Å, was shorter than those observed for most other linear Ru–NO systems. In the latter, the bonded Ru–Ru distances were 2.79 Å (bond order 1) and the non-bonded separations 3.67 Å; the Ru–N distances were 1.78 Å.

Ge(CH=CH₂)Cl₃ reacted [136] with Na[Fe(CO)₃(NO)] giving CXVII, and GeMe₂Cl₂ afforded CXVIII (isomers of CXVII were identified). UV irradiation of $(\pi$ -C₅H₅)Fe(CO)₂ GeMe₂Cl afforded a 4/1 mixture of the *cis*and *trans*-isomers of CXIX.

Metal carbene complexes

UV irradiation of the carbene complex $(\pi - C_5H_5)Mo(CO)(NO)[CRPh]$ (R = OMe, OEt or NMe₂) in the presence of Fe(CO)₅ afforded [137] Fe(CO)₄[CRPh] and $(\pi - C_5H_5)Mo(CO)_2(NO)$. The complexes Fe(CO)₄[C(OEt)R] (R = C₆F₅, C₆Cl₅, NMe₂ or NEt₂) were prepared by treating Fe(CO)₄[C(OLi)R] with [Et₃O][BF₄]. Addition of 1,4-dimethyltetrazolium salts (CXX) to Na[Fe(CO)₄H] afforded [138] the carbene species CXXI and CXXII, probably via the mechanism shown in Scheme 15. The isocyanide complexes were isolated and characterised. The structure of CXXIII has been established crystallographically; the Fe–C (carbene) distance was 2.01 Å [139].

The imidazole complex $[Ru(NH_3)_5(imide)]^{2+}$ (N-bonded imide) reacted [140] with acid, HX, giving $[Ru(NH_3)_5(H_2O)]^{2+}$ and $[Ru(NH_3)_4(imide)X]^{2+}$ in which the imidazole ligand was C-bound (CXXIV). $[Ru(NH_3)_5(H_2O)]^{2+}$ afforded a similar species when treated with 4,5-dimethylimidazole in acid at pH 5.5.

Reaction of $Fe(CO)_2(NO)_2$ or $Fe(CO)(NO)(PPh_3)$ with LiR (R = NHMe, NMe₂, NEt₂, or Ph) gave [141] $Fe(CO)(NO)_2[C(OLi)R]$ and $Fe(NO)_2(PPh_3)$ -[C(OLi)R]. Treatment of these with [Et₃O][BF₄] afforded $Fe(CO)(NO)_2$ -[C(OEt)R] and $Fe(NO)_2(PPh_3)$ [C(OEt)R].

Addition of L (NH₃, NHEt₂, PhNHNH₂ or pyridines) to $Fe_2(CO)_6(\mu$ -COR)₂ (R = Me or Ph) afforded [142] $Fe_2(CO)_5(L)(\mu$ -COR)₂, and with EtSH or PhSeH, $Fe_2(CO)_6(\mu$ -SEt)₂ and $Fe_2(CO)_6(\mu$ -SePh)₂ were isolated. Reaction with PPh₃ or PPr-i₃ gave CXXV and $Fe(CO)_3(PR_3)_2$.

Treatment of $Fe(CO)_5$ with $LiC_6H_3(OMe)_2$, followed by $[Et_3O][BF_4]$, afforded [143] CXXVI whose molecular structure has been determined [144].

The compound was described as containing the system $\text{Fe}-\dot{C}-\text{OR}'\pi$ -bonded to an $\text{Fe}(\text{CO})_3$ group. Reaction of $\text{Fe}(\text{CO})_5$ with $[\text{Al}(\text{NMe}_2)_3]_2$ gave [145] the binuclear aluminoxycarbene CXXVII.

π -Cyclopentadienyl complexes

Neutral bi- and tetra-nuclear carbonyl complexes

In solution, the existence of four isomers of $[(\pi - C_5H_5M(CO)_2]_2$ (M = Fe or Ru), the *cis*- and *trans*-forms, and two non-bridged forms, CXXVIII and CXXIX, were detected by ¹H NMR spectral studies [146]. The measured

(CXXVIII)

(CXXIX)

thermodynamic and kinetic data could be interpreted in terms of non-bridged isomers as intermediates in the *cis-trans* bridged isomer interconversion. By using ¹³C NMR spectroscopy, with Cr(Acac)₃ as a shiftless relaxation agent, it was shown [147] that both *cis-* and *trans-*forms of $[(\pi-C_5H_5)Fe(CO)_2]_2$ interconverted their terminal and bridging CO groups. No evidence for non-bridged isomers could be detected by this spectral method. Fe₃(CO)₁₂ was also shown to be stereochemically non-rigid.

The species $(\pi - C_5 H_5)_2 \operatorname{Fe}_2(CO)_3(CNBu-t)$ was non-rigid, the isocyanide ligand being exchanged [148] between the two Fe atoms via bridged and non-bridged intermediates (Scheme 16).

Reaction of Na[Fe(CO)₂(π -C₅H₅)] with (NC)₂C=CCl₂ gave [(π -C₅H₅)-Fe(CO)₂]₂, and two isomers of (π -C₅H₅)₂Fe₂(CO)₃{C=C(CN)₂}, CXXX [149].

The carbonylate anion also reacted with $C(CN)_2Br_2$ giving the dicarbonyl dimer, $(\pi-C_5H_5)Fe(CO)_2Br$, $(\pi-C_5H_5)Fe(CO)_2[C(CN)_2H]$ (this last was also produced in the reaction between $[(\pi-C_5H_5)Fe(CO)_2]^-$ and $CH(CN)_2Br$), and $(\pi-C_5H_5)_2Fe_2(CO)_3[C(CN)_2]$, CXXXI.

Scheme 17

Solution IR spectral studies of $[(\pi-C_5H_5)Fe(CO)_2]_2$ in the presence of AlR₃ (R = Et or i-Bu) revealed that 1/1 and 1/2 adducts, CXXXII, were formed [15]. The AlR₃ was removed by Et₃N, and the rate of $cis \Rightarrow trans$ isomerisation of the dimer was slowed by AlR₃, suggesting that the isomerism involved non-bridged intermediates. $[(\pi-C_5H_5)Ru(CO)_2]_2$ behaved similarly and caused rapid isomerisation of the non-bridged form to the cis- and trans-AlR₃ adducts. The tetramer $[(\pi-C_5H_5)Fe(CO)]_4$ also formed AlR₃ adducts. With Sm(C₅H₄Me)₃ and Sm(C₅H₅)₃, $[(\pi-C_5H_5)Fe(CO)_2]_2$ afforded [151] 1/1 and 1/2 addition compounds similar to those already described for AlR₃; Fe(CO)₂(NO)₂ apparently did not afford these adducts [150, 152].

Careful treatment [153] of $[(\pi - C_5H_5)Fe(CO)]_2(Ph_2PZPPh_2)$ (Z = CH₂, C_2H_2 , C_2H_4 , C_3H_6 or NEt), CXXXIII, with iodine or Ag⁺ gave [{(π -C₅H₅)-Fe(CO)₂(Ph₂PZPPh₂)⁺. Reduction of this cation to CXXXIII (Z = CH₂) was achieved using hydrazine or I⁻. With excess I₂, CXXXIII ($Z = CH_2$) afforded $[\{(\pi-C_5H_5)Fe(CO)\}_2I(Ph_2PZPPh_2)]^+$ which contained bridging iodine as well as bridging diphosphine, but similar treatment of CXXXIII ($Z = C_2 H_4$) gave only $[(\pi - C_5 H_5)Fe(CO)_2(Ph_2PCH_2CH_2PPh_2)]^+$ (the diphosphine is monodentate); $[(\pi - C_5H_5)Fe(CO)I]_2(Ph_2PCH_2CH_2PPh_2)$ was also obtained. These reaction. and the proposed structures, are outlined in Scheme 17. Electrochemical oxidation of CXXXIII ($Z = C_2 H_4$) in a variety of solvents occurred [154] in two one-electron steps, affording, initially $[\{(\pi - C_5H_5)Fe(CO)\}_2(Ph_2PCH_2CH_2)]$ PPh₂)]⁺. It was suggested that this cation was isostructural with CXXXIII but had a "one-electron Fe-Fe bond". In MeCN, the cation disproportionated giving CXXXIII and $[((\pi - C_5H_5)Fe(CO)(NCMe)]_2(Ph_2PCH_2CH_2PPh_2)]^{2+}$. Removal of the second electron from CXXXIII ($Z = C_2 H_d$) caused decomposition by two pathways (Scheme 18).

Pentalenes reacted with $Fe(CO)_5$ giving bimetallic complexes, CXXXIV [155].

The tetrameric species $[(\pi-C_5H_5)Fe(CO)]_4^n$ (n = 0) could be electrochemically oxidised or reduced giving [156] the species n = -1, +1 or +2. The monoanion (g = 2.013) was characterised spectroscopically in solution whereas the monocation $(\mu = 2.46 \text{ B.M.})$ was isolated. Attempts to isolate $[(\pi-C_5H_5)Fe(CO)]_4^{2+}$ resulted in its decomposition to Fe²⁺ and $[(\pi-C_5H_5)-Fe(CO)_2S]^+$ (S = solvent, MeCN or BuCN). The molecular structure determination of $[(\pi-C_5H_5)Fe(CO)]_4$, CXXXV, established [157] that it had a cubane-like architecture with triply bridging CO groups; the Fe—Fe distances averaged 2.50 Å. The monocation, $[(\pi-C_5H_5)Fe(CO)]_4[PF_6]$, had essentially the same

structure [158]; the major differences arose from a decrease in Fe—Fe distances to 2.48 Å. The average C—O bond length (1.19 Å) was ca. 0.02 Å shorter than that in CXXXV whereas the Fe—CO bond distances in both species were virtually identical. A molecular orbital description of these clusters suggested that oxidation of CXXXV should lead to electron loss from an orbital weakly antibonding with respect to the Fe₄ cluster, and hence contraction of the Fe—Fe bond lengths would be expected. It was predicted that reduction should lead to a large increase in the Fe—Fe distances.

Cationic complexes

Addition of NO⁺ to $(\pi$ -C₅H₅)Fe(CO)₂I and $(\pi$ -C₅H₅)Fe(CO)(μ -SMe)₂ in MeCN afforded [159] $[(\pi$ -C₅H₅)Fe(CO)₂(NCMe)]⁺ and $[\pi$ -C₅H₅)Fe(CO)- $(\mu$ -SMe)]₂⁺, respectively. Reaction of $[(\pi$ -C₅H₅)Fe(CO)₂(OCMe₂)]⁺ with Ph₂P(CH₂)_nPPh₂ (n = 1, 2 or 3) gave [160] $[(\pi$ -C₅H₅)Fe(CO)₂{Ph₂P(CH₂)_n-PPh₂}]⁺ in which the diphosphine was monodentate. These complexes behaved as ligands towards $[(\pi$ -C₅H₅)Fe(CO)₂(OCMe₂)]⁺ and CoCl₂ (Scheme 19), and were decarbonylated by UV radiation. The complexes $[\{(\pi$ -C₅H₅)Fe(CO)₂]₂-(MeSCH₂CH₂SMe)](ClO₄)₂ and $[\{(\pi$ -C₅H₅)Fe(CO)₂]₂(pyrazine)](ClO₄)₂ were also isolated.

The CO stretching force constant in $[(\pi - C_5H_5)M(CO)_2L]^+$ (M = Fe or Ru, L = CO or PPh₃) have been correlated [161] with the ease of reaction of the CO groups with amines giving coordinated carboxamides. Thus those species

 $[(\pi - C_5H_5)Fe(CO)_2Ph_2P(CH_2)_nPPh_2]_2CoCl_2]^{2+}$ Scheme 19

with $\nu(CO)$ less than 2000 cm⁻¹ did not form carboxamides. Such adducts were readily formed with $[(\pi - C_5H_5)M(CO)_3]^+$ and although $[(\pi - C_5H_5)Fe(CO)_2(PPh_3)]$ should have given an equilibrium mixture of cation and carboxamide, only the latter was obtained because of its insolubility.

The cations $[(\pi-C_5H_5)Fe(CO)_2L]^+(L = CO, PEt_3 \text{ or }PPh_3)$ reacted [162] with liquid NH₃ giving $(\pi-C_5H_5)Fe(CO)L(CONH_2)$; the related $[(\pi-C_5H_4CH_2Ph)-Fe(CO)_2L]^+$ and $[(\pi-C_7H_8CPh_3)Fe(CO)_3]^+$ behaved similarly. Oxidative degradation of the carboxamido complexes with iodine afforded isocyanato complexes, whereas reaction of $(\pi-C_5H_5)Fe(CO)_2(CONH_2)$ with HCl or HI gave $[(\pi-C_5H_5)Fe(CO)_3]^+X^-$ (X = Cl or I). Bromination of $(\pi-C_5H_5)Fe(CO)_2^-$ (CONHMe) afforded [163] $(\pi-C_5H_5)Fe(CO)_2Br$, $[(\pi-C_5H_5)Fe(CO)_3]Br$, MeNCO and [MeNH₃]Br. Iodination or chlorination of the cyclohexyl carboxamide gave similar compounds but MeI and C_3F_7I did not react. With HgCl₂, $(\pi-C_5H_5)Fe(CO)_2HgCl$, $[\pi-C_5H_5)Fe(CO)_3]Cl$, $C_6H_{11}NCO$ and $[C_6H_{11}NH_3]Cl$ were formed.

Reaction of LiMe with $[(\pi - C_5H_5)Fe(CO)_3]^+$ gave [164] only traces of $(\pi - C_5H_5)Fe(CO)_2(COMe)$ and mainly $[(\pi - C_5H_5)Fe(CO)_2]_2$, but with LiPh both $(\pi - C_5H_5)Fe(CO)_2(COPh)$ (80%) and the dimer were obtained. Action of PhCH₂MgCl on the cation afforded *exo*-(5-PhCH₂C₅H₅)Fe(CO)₃, and $[(\pi - C_5H_5)Fe(CO)_2(PPh_3)]^+$ behaved similarly. Treatment of $[(\pi - C_5H_5)-Fe(CO)_2(CS)]^+$ with LiMe gave the dicarbonyl dimer and other unidentified products.

Reaction of $(\pi - C_5H_5)Fe(CO)_2X$ (X = Br or I) with PPhH₂ and PPh₂H (L) gave [165] $[(\pi - C_5H_5)Fe(CO)_2L]^+$ and $(\pi - C_5H_5)Fe(CO)LX$. Treatment of $[(\pi - C_5H_5)Fe(CO)_2(PPhH_2)]$ with LiMe gave $[(\pi - C_5H_5)Fe(CO)_2]_2$ and $[(\pi - C_5H_5)Fe(CO)(\mu - PPhH)]_2$, but with LiBu at low temperatures an unidentified, possibly lithiated, species was formed: addition of MeI to this at low temperature afforded $[(\pi - C_5H_5)Fe(CO)_2(PPhMe_2)]^+$ and at room temperature $(\pi - C_5H_5)Fe(CO)_2Me$. Addition of methoxide ion to $[(\pi - C_5H_5)-Fe(CO)_2(PPh_2H)]^+$ gave *cis*- and *trans*- $[(\pi - C_5H_5)Fe(CO)(\mu - PPh_2)]_2$, and treatment of the cation with OMe⁻ and MeI afforded $[(\pi - C_5H_5)Fe(CO)_2^ (PPh_2Me)]^+$. Reaction of $(\pi - C_5H_5)Fe(CO)(PPh_2H)Br$ with LiBu gave *cis*- $[(\pi - C_5H_5)Fe(CO)(\mu - PPh_2)]_2$, and similar treatment of Fe(CO)₄(PPh_2H) under UV light gave Fe₂(CO)₆($(\mu - PPh_2)_2$. UV irradiation of $[(\pi - C_5H_5)Fe(CO)_2^ (PPh_2H)]^+$ afforded CXXXVI.

Complexes containing P and S bridges

Reaction of $[(\pi-C_5H_5)Fe(CO)_2]_2$ with $(F_3C)_2PP(CF_3)_2$ gave $(\pi-C_5H_5)$ -Fe(CO)_2[P(CF_3)_2] which, on heating or UV irradiation, afforded [166] $[(\pi-C_5H_5)Fe(CO)_{\{\mu-P(CF_3)\}}]_2$. While the latter did not react with NO, the former gave $(\pi-C_5H_5)Fe(CO)_2[P(=O)(CF_3)_2]$ apparently without prior coordination of the NO to the metal. UV irradiation of this phosphonite afforded $[(\pi-C_5H_5)Fe(CO)_{\{\mu-P(CF_3)_2\}}]_2$ and the paramagnetic $(\pi-C_5H_5)_2Fe_3$ - $(CO)_2[P(=O)(CF_3)_2]_4$ ($\mu = 4.5-4.6$ B.M.). Reaction of $(\pi-C_5H_5)Fe(CO)_2$ - $[P(CF_3)_2]$ with S₈ gave $(\pi-C_5H_5)Fe(CO)_2[P(=S)(CF_3)_2]$ which, on irradiation, produced $(\pi-C_5H_5)Fe(CO)_2SP(=S)(CF_3)_2$.

Treatment of $(\pi - C_5H_5)Fe(CO)_2(PPh_2)$ with $Fe_2(CO)_9$, or of $[(\pi - C_5H_5)-Fe(CO)_2]^-$ with $Fe(CO)_4(PPh_2Cl)$, afforded [167] $(\pi - C_5H_5)Fe(CO)_2(\mu - PPh_2)$ -

Fe(CO)₄, CXXXVII, and this, on UV irradiation, gave $(\pi$ -C₅H₅)Fe(CO)-(μ -PPh₂(μ -CO)Fe(CO)₃, CXXXVIII. Reaction of CXXXVIII with phosphines or phosphites, L, gave $(\pi$ -C₅H₅)Fe(CO)(μ -PPh₂)(μ -CO)Fe(CO)₂L or its isomer $(\pi$ -C₅H₅)Fe(CO)(μ -PPh₂)Fe(CO)₃L and $(\pi$ -C₅H₅)Fe₂(CO)₃(μ -PPh₂)L₂. With Ph₂PCH₂CH₂PPh₂, CXXXVIII afforded CXXXIX. $(\pi$ -C₅H₅)Fe(CO)₂SMe reacted with Fe₂(CO)₉ giving $(\pi$ -C₅H₅)Fe(CO)(μ -SR)Fe(CO)₄ (R = Me or Ph) and $(\pi$ -C₅H₅)Fe(CO)(μ -SR)(μ -CO)Fe(CO)₃, analogs of CXXXVII and CXXXVIII.

Excess of SO₂ in THF at low temperatures reacted [168] with Na[Fe(CO)₂(π -C₅H₅)] giving [(π -C₅H₅)Fe(CO)₂]₂, heat and light sensitive [(π -C₅H₅)Fe(CO)₂]₂SO₂, CXL, and traces of (π -C₅H₅)₂Fe₂(CO)₃(SO₂). The X-ray structural determination of CXL revealed that the central S atom had a distorted geometry and that the Fe—S distance (2.28 Å) was between that in (π -C₅Me₅)Fe(CO)₂SO₂CH₂CH—CHPh (2.22 Å) [169] and that expected for an Fe—S bond of unit order. CXL reacted with MeI giving (π -C₅H₅)Fe(CO)₂-SO₂Me and (π -C₅H₅)Fe(CO)₂I.

Reaction of $(\pi$ -C₅H₅)Fe(CO)₂SMe with $(\pi$ -C₅H₅)Fe(CO)₂Cl afforded [170] $[(\pi$ -C₅H₅)Fe(CO)₂(μ -SMe)Fe(CO)₂(π -C₅H₅)]⁺, and treatment of the

chloride with $(\pi - C_5H_5)Mn(CO)_2[MeSSnMe_3]$ and $M(CO)_5[MeSSnMe_3]$ (M = Cr, or W) gave $(\pi - C_5H_5)Fe(CO)_2(\mu - SMe)Mn(CO)_2(\pi - C_5H_5)$ and $(\pi - C_5H_5)Fe(CO)_2$ - $(\mu - SMe)M(CO)_5$, respectively.

Oxidation of $[(\pi-C_5H_5)Fe(CO)(\mu-SMe)]_2$ by O_2 in acidic media gave [171] the monocation, $[(\pi-C_5H_5)Fe(CO)(\mu-SMe)]_2^+$; reduction could be effected using amines or hydrazines in the presence of water. The redox reaction was stereoselective, the *cis*-neutral species affording the *cis*-cation. Excess Br₂ reacted with the neutral species giving $[(\pi-C_5H_5)Fe(CO)(\mu-SMe)]_2^{2+}$ and Mössbauer spectral studies showed that there was an increase in the *s*-electron density at the Fe atoms on oxidation, but that the two Fe atoms remained equivalent.

Halide complexes

 $(\pi$ -C₅H₅)Fe(CO)₂I reacted [172] with Hg(C₆Cl₅)Cl giving $(\pi$ -C₅H₅)Fe(CO)₂Cl. Addition of AlX₃ or FeCl₃ to $(\pi$ -C₅H₅)Fe(CO)₂X and to Fe(CO)₂(PMe₃)₂X₂ (X = Cl, Br or I) gave [173] the adducts $(\pi$ -C₅H₅)Fe(CO)₂(X \rightarrow AlX₃), $(\pi$ -C₅H₅)Fe(CO)₂(X \rightarrow FeCl₃) and Fe(CO)₂(PMe₃)₂(X \rightarrow acceptor)₂.

The integrated intensities of $\nu(CO)$ in solution have been determined [174] for $(\pi$ -C₅H₅)Fe(CO)₂X (X = Cl, I, CN, SnCl₃, COMe) and $(\pi$ -C₅H₅)Fe-(CO)(PPh₃)(CH₂Ph), and the results were interpreted in terms of the π -C₅H₅ ring acting primarily as a donor in these compounds. The ¹³C NMR spectra of $(\pi$ -C₅H₅)Fe(CO)₂X (X = Cl, Br, I, CN, COMe, alkyl, aryl, SiR₃, SnR₃ and GePh₃) have been measured [175] and there is a linear dependence of $\nu(CO)$ on the Taft σ_1 value for X and on the measured value of $\nu(CO)$. It would appear that $\nu(CO)$ varies according mainly to changes in the paramagnetic screening term.

CO substitution reactions of $(\pi$ -C₉H₇)Fe(CO)₂I (C₉H₇ = indenyl) proceeded [176] by an $S_N 1$ mechanism and were ca. 600 times faster than those of its π -C₅H₅ analog. The acceleration could not be accounted for by steric arguments since the even more crowded tetrahydroindenyl complex reacted at a rate comparable with $(\pi$ -C₅H₅)Fe(CO)₂I. However, the rate enhancement could be due to a lowering in energy of the activated state caused by an interaction between the aromatic six-membered ring and the Fe atom which partly compensated for the loss of bonding to the leaving CO group.

Addition of (+)- α -CNCH(Me)Ph to (π -C₅H₅)Fe(CO)₂I afforded [177] the diastereoisomeric pairs (+)- and (-)-(π -C₅H₅)Fe(CO)(CNR*)I, which were separable. These were conformationally stable in the absence of light, but underwent photoracemisation. Treatment of (π -C₅H₅)Fe(CO)₂I with Ni(PF₃)₄ gave [178] (π -C₅H₅)Fe(CO)(PF₃)I. Reaction of (π -C₅H₅)Fe(CO)₂X (X = Br or I) with PF₂(NR₂) (R = Me, Et or piperidine) under UV light gave [179] (π -C₅H₅)Fe(CO){PF₂(NR₂)}X and/or (π -C₅H₅)Fe(PF₂(NR₂)}₂X depending on the reaction stoichiometries. Reaction of PF₂(NC₅H₁₀) with the iodide in the presence of Ag⁺ gave [(π -C₅H₅)Fe(CO)₂{PF₂(NC₅H₁₀)}]⁺. Treatment of [(π -C₅H₅)Fe(CO)₂]₂ with PF₂(NEt₂) afforded (π -C₅H₅)Fe(CO)₂[PF₂(NEt₂)] and (π -C₅H₅)Fe(CO)₂[PF₂(NEt₂)]₂, and of (π -C₅H₅)Fe(CO)₂Me with PF₂(NR₂) (π -C₅H₅)Fe(CO)₂[PF₂(NR₂)] (COMe).

Halogenation of $[(\pi - C_5H_5)Ru(CO)_2]_2$ gave [180] the white $(\pi - C_5H_5)$ -Ru(CO)₂X (X = Cl, Br or I) in dichloromethane or chloroform, but in benzene,

in the presence of PF_6^- , $[{(\pi-C_5H_5)Ru(CO)_2}_2X]^+$ was produced. Reaction of this cation with nucleophiles, Y (SCN, CN or X) gave $(\pi-C_5H_5)Ru(CO)_2X$ and $(\pi-C_5H_5)Ru(CO)_2Y$. The binuclear cation also reacted with BPh_4^- and BPh_3CN^- giving, in both cases, $(\pi-C_5H_5)Ru(CO)_2X$ and also $(\pi-C_5H_5)Ru(CO)_2Ph$ and $(\pi-C_5H_5)Ru(CO)_2CN$, respectively. The intermediate in the cyanoborate ion reaction was believed to be $(OC)_2(\pi-C_5H_5)Ru^+CNBPh_3^-$; the mechanism is summarised in Scheme 20.

Mixed metal compounds

Reaction of $[(\pi-C_5H_5)Fe(CO)_2]_2$ with Mg amalgam in a basic solvent B (THF, pyridine or Me₂NCH₂CH₂NMe₂) gave [181] $[(\pi-C_5H_5)Fe(CO)_2]MgB_x$ (x = 2 when B is monobasic). The Fe bond was not wholly dissociated in solution and $\nu(CO)$ indicated vibronic coupling across the Fe-Mg-Fe bond system. The complex $[(\pi-C_5H_5)Fe(CO)_2]_2Zn$ in methanol was tetrameric [182] with a structure probably similar to $[Zn(OMe)Me]_4$ [183].

Reaction of Na[Fe(CO)₂(π -C₅H₅)] with InCl₃, or [(π -C₅H₅)Fe(CO)₂]₂ or [(π -C₅H₅)Fe(CO)₂]₂Hg with InCl in dioxan gave [184] [(π -C₅H₅)Fe-(CO)₂]₂InCl. However, reaction of Na[Fe(CO)₂(π -C₅H₅)] with InX₃ (X = Cl or Br), or of (π -C₅H₅)Fe(CO)₂X with InX in THF afforded (π -C₅H₅)Fe-(CO)₂InX₂.

IR spectral studies revealed [185] that $(\pi$ -C₅H₅)Fe(CO)₂(SiMeCl₂) existed as rotational isomers. Reaction of Na[Fe(CO)₂(π -C₅H₅)] with XMe₂SiSiMe₂Cl (or Br) gave [186] (π -C₅H₅)Fe(CO)₂SiMe₂SiMe₂X.

 $(\pi-C_5H_5)Fe(CO)_2(GeX_3)$ (X = Cl, Br or I) was prepared [187] by reaction of GeX₄ with $[(\pi-C_5H_5)Fe(CO)_2]_2$. *cis*-Ru(CO)₄(GeMe₃)₂ caused [188] ring contraction of *trans, trans, trans*-cyclododecatriene giving a mixture of products, among them CXLI and CXLII. These compounds could also be obtained from 1,5-cyclooctadiene and *cis*-Ru(CO)₄(GeMe₃)₂, when CXLIII was also formed. Indeed, CXLIII appeared to be a mutual precursor for CXLI and CXLII.

Reaction of $[(\pi\text{-dienyl})\text{Fe}(\text{CO})_2]_2$ (dienyl = C_5H_5 , C_5H_4 Me or C_9H_7) with SnX₂ (X = F, Cl, Br or I) gave [189] ($\pi\text{-dienyl}$)Fe(CO)₂X, ($\pi\text{-dienyl}$)-Fe(CO)₂SnX₃, $[(\pi\text{-dienyl})\text{Fe}(\text{CO})_2]_2$ SnX₂ or $[(\pi\text{-dienyl})\text{Fe}(\text{CO})_2]_3$ SnX depending on X, the reaction conditions and stoichiometries. When X = F or Cl, insertion of SnX₂ into the Fe—Fe bond occurred in one step giving $[(\pi\text{-}C_5H_5)\text{-}$ Fe(CO)₂]_2SnX₂. When X = Br or I, the precursor was first converted into mixtures of (π -dienyl)Fe(CO)₂X and (π -dienyl)Fe(CO)₂SnX₃. The latter reacted further with an excess of $[(\pi\text{-dienyl})\text{Fe}(\text{CO})_2]_2$ giving $[(\pi\text{-dienyl})\text{Fe}(\text{CO})_2$ SnX₃ or $[(\pi\text{-dienyl}')\text{Fe}(\text{CO})_2]_2$ SnX₂ could be used to prepare $[(\pi\text{-dienyl})\text{Fe}(\text{CO})_2]_2$ [($\pi\text{-dienyl}$)Fe(CO)₂]-[($\pi\text{-dienyl}'$)Fe(CO)₂]SnX₂ or $[(\pi\text{-dienyl})\text{Fe}(\text{CO})_2]_2[(\pi\text{-dienyl}')\text{Fe}(\text{CO})_2]$ SnX. SnX₄ also reacted with $[(\pi\text{-dienyl})\text{Fe}(\text{CO})_2]_2$ giving similar products.

The ^{119m}Sn Mössbauer spectral parameters for $(\pi - C_5H_5)Fe(CO)_2SnCl_{3-n}Ph_n$ (n = 0, 1, 2 or 3) have been interpreted [190] in terms of a point charge model and the data showed that the *p*-donor capacity was less than that of Ph or alkyl groups.

The binuclear $(\pi$ -dienyl)FeCo(CO)₆ (dienyl = C₅H₅, C₅H₄Me or C₉H₇) reacted [191] with dienes (norbornadiene, cyclohexa-1,3-diene or 2-3-dimethylbuta-1,3-diene) giving $(\pi$ -dienyl)Fe(CO)(μ -CO)₂Co(CO)(diene), which existed in the solid state, and in solution, as *cis*- and *trans*-isomers, CXLIV. The relative abundance of the two forms in solution depended on the solvent, its

temperature, the diene, and, to a lesser extend, the π -dienyl ligand: the proportion of *cis*-isomers decreased along the series $C_7H_8 > C_6H_8 > C_6H_{10}$. There was no evidence for non-bridged species.

Reaction of $[Rh(C_8H_{12})Cl]_2$, $[Rh(CO)_2Cl]_2$ or $RhCl_3 \cdot nH_2O$ in methanol, or of $[Rh(C_8H_{12})(THF)_2]^+$ in THF, with an excess of $(\pi - C_5H_4R)Fe(CO)_2(PPh_2)$ (R = H or Me) afforded [192] $[Rh{Fe(\mu-PPh_2)(CO)_2(\pi - C_5H_4R)}_2]X$ (X = BPh₄, PF₆ or SbF₆). The structure of this compound (R = Me) was predicted, on the basis of the rare gas rule, to be CXLV, but was found crystallographically, to be CXLVI. The Fe—Rh distances were 2.66–2.67 Å, and the Fe—Rh—Fe dihedral angle was 145°. Reaction of the trinuclear species with L (P(OMe)_3 or PPh_3) gave $[Rh{Fe(\mu-PPh_2)(CO)_2(\pi - C_5H_4R)}_2L]BPh_4$, and the complex where L = PPh₃ could be obtained directly from the reaction of Rh(C₈H₁₂)(PPh₃)Cl with $(\pi - C_5H_5)Fe(CO)_2(PPh_2)$ in ethanol in the presence of BPh₄⁻. Similar iridium complexes were obtained using $[Ir(C_8H_{12})(THF)_2]^+$, and mercaptide-containing analogs were produced via $(\pi - C_5H_5)Fe(CO)_2(SR)$ (R = Et or Bu-t).

Treatment of $(\pi$ -C₅H₅)Ni(PR₃)X (PR₃ = PPh₃, PPh₂Me, PPhMe₂ or PMe₃) with Na[Fe(CO)₂(π -C₅H₅)] gave [193] eventually $(\pi$ -C₅H₅)Ni(μ -CO)₂-Fe(PR₃)(π -C₅H₅) via two intermediates (Scheme 21) which were not isolated. However, reaction of $(\pi$ -C₅H₅)Ni(μ -CO)₂Fe(CO)(π -C₅H₅) with PPh₃ gave only $(\pi$ -C₅H₅)₂Ni, Ni(CO)₂(PPh₃)₂ and [(π -C₅H₅)Fe(CO)₂]₂. Reaction of $(\pi$ -C₅H₅)Ni(μ -CO)₂Fe(CO)(π -C₅H₅) with SnCl₂ afforded CXLVII.

Metal a- and π -bonded carbon derivatives

¹H NMR spectral studies of $(\pi-C_5H_5)Fe(CO)_2X$ (X = halide, Me, Ph, COMe or CN) and of $(\pi-C_5H_5)Fe(CO)(PPh_3)(p-RC_6H_4)$ (R = OMe, Me, H, Cl, F or CO₂Et) revealed [194] that the effects of X and R on δ (C₅H₅) were predominantly inductive. On the basis of ¹⁹F NMR spectral investigations, the σ inductive and resonance constants of $(\pi-C_5H_5)Fe(CO)L$ in $(\pi-C_5H_5)Fe(CO)L$ - $(p-FC_6H_4)$ (L = CO, PPh₃ or P(OPh)₃) were determined, and it was shown that an inductive interaction within the Fe—Aryl bond was predominant.

Addition of HBF₄ in acetic anhydride to $(\pi - C_5H_5)Fe(CO)_2CH_2C\equiv CR$ (R = Me or Ph) gave [195] the cationic allene complex CXLVIII. The reactions of this cation with various nucleophiles are summarised in Scheme 22. The observed reactivity towards nucleophiles of the terminal C atom of the coordinated allene added support to the proposed mechanism of cycloaddition reactions of the FeCH₂C≡CR group. Thus, the formation of CXLIX, where

$$(\pi - C_{5}H_{5})Fe(CO)_{2}CH_{2}C \equiv CR \xrightarrow{H^{*}} CXLVIII \xrightarrow{BH_{4}^{-}} (\pi - C_{5}H_{5})Fe(CO)_{2}CMe = CHR$$

$$(\pi - C_{5}H_{5})Fe(CO)_{2}CH_{2}CCH_{2}R$$

$$(\pi - C_{5}H_{5})Fe(CO)_{2}C = CHR$$

Scheme 22

 $EN = SO_2$, SO_3 , $(CF_3)_2CO$ or $ClSO_2NCO$, may proceed via the intermediacy of an allene complex which is generated by attack of the electrophilic part (E) of EN on the C=C bond. This allene then rearranges to a cyclic product via interaction with the nucleophilic part (N) of EN with the terminal C atom of the coordinated allene.

The cyclopropyl complexes CL and CLI were prepared [196] by reaction of $(\pi$ -C₅H₅)Fe(CO)₂Br with LiC₃H₅, and Na[Fe(CO)₂(π -C₅H₅)] with the appropriate cyclopropyl bromide, respectively. CL reacted with HCl giving $(\pi$ -C₅H₅)Fe(CO)₂Cl, and releasing cyclopropane and propene, but with HBF₄

or Ph_3CBF_4 , CLII was formed. The formation of the olefinic cation did not proceed via C_2-C_3 cleavage, as shown in Scheme 23. This may be accounted for by initial formation of a cationic carbene complex via cleavage of the C_1-C_2 bond and rapid rearrangement of this ion through minimum energy

Scheme 23

conformational changes (Scheme 24). The cationic carbene intermediate could be trapped via the reaction of CL with an uncharged electrophile, E, viz. SO_2 or $(NC)_2C=C(CN)_2$ (Scheme 25). The products depicted again arose via collapse of the carbene intermediate induced by metal-assisted electrophilic cleavage of the C_1-C_2 bond. Rearrangement of the carbene intermediate is, to a limited extent, also possible, as depicted for SO_2 addition to CL and CLI in Scheme 26.

Reaction of CLIII with R"NCO gave [197] CLIV when $R'' = 2,5-C_6H_2Cl_2$ SO₂Cl, H, *p*-MeC₆H₄SO₂ or MeOSO₂, but no reaction was observed when R'' = Et or Ph. Addition of *p*-MeC₆H₄SO₂NCO to CLV afforded CLVI, and of MeO₂CN=SO₂. THF to CLIII, CLVII. These reactions probably occurred via a

Scheme 25

two-step process (Scheme 27). The cyclic olefinic derivatives CLVIII (n = 2, 3 or 4) were prepared by H⁻ abstraction from the corresponding cyclic alkyl derivatives, by exchange of the cyclic olefin with isobutylene in $[(\pi - C_5H_5)Fe-(CO)_2(isobutylene)]^+$, by treatment of epoxides with NaFe(CO)₂(π -C₅H₅) and then H⁺ (ref. 214) or by reaction of 3-chlorocyclopentene with NaFe(CO)₂-(π -C₅H₅). Conversion of CLVIII (n = 2 or 3) to CLIX was achieved using Et₃N, and the failure of CLVIII (n = 4) to react was rationalised on steric grounds.

$$[Fe] \xrightarrow{E} \longrightarrow [Fe]^{+} \xleftarrow{E^{-}} [Fe] \xrightarrow{E^{-}} [Fe] \xrightarrow{E^{-} [Fe] \xrightarrow{E^{-}} [Fe] \xrightarrow{E^{-}} [Fe] \xrightarrow{E^{-}} [Fe] \xrightarrow{E^{-}} [Fe] \xrightarrow{E^{-} [Fe] \xrightarrow{E^{-}} [Fe] \xrightarrow{E^{-}}$$

Models indicated that in CLVIII (n = 4) the metal function lay *exo* to the ring and no allylic protons *trans* to the metal-olefin bond were available for abstraction. Reaction of CLIX (n = 2 or 3) with *p*-MeC₆H₄SO₂NCO afforded

CLX and CLXI, respectively, and $(\pi$ -C₅H₅)Fe(CO)₂(σ -C₅H₅) gave CLXII; similar products were obtained with MeOSO₂NCO. The stereochemistry assigned to these species corresponded to that derived from sterically preferred cycloaddition *trans* to the bulky $(\pi$ -C₅H₅)Fe(CO)₂ group. The behaviour of CLIX (n = 2 or 3) with ClSO₂NCO was different to that with the tosyl isocyanate, but only the products when n = 2 were characterised (Scheme 28). It would appear that base-assisted deprotonation of π -bonded olefins occurred preferentially *exo* to the metal—olefin bond, in contrast to the behaviour in π -allylic systems, where *endo* proton exchange with the solvent was apparently preferred.

In passing, it may be noted that RNCO (R = Bu-t) reacted [198] with $(\pi-C_5H_5)Fe(CO)_2H$ giving $(\pi-C_5H_5)Fe(CO)_2(CONHR)$, $(\pi-C_5H_5)_2Fe_2(CO)_3(CNR)$ (terminal isocyanide) and $(\pi-C_5H_5)Fe(CO)(CNR)(CONHR)$.

Reaction of Na[Fe(CO)₂ (π -C₅H₅)] with CLXIII gave [199] CLXIV and not CLXV, in contrast to the reaction with 3,4-dichlorocyclobutene, which afforded [200] CLXVI.

¹³C NMR spectral studies of $(\pi - C_5H_5)Fe(CO)_2(\sigma - C_5H_5)$ lent [201] further support to the proposal that the σ -bonded ring undergoes a series of 1,2-shifts. Spectral comparisons were made with $(\pi - C_5H_5)Fe(CO)_2CH_2CH=CH_2$, and this helped in assignation of the various δ_{C} . Wide-line NMR studies of the σ -cyclopentadienide established [202] that it is non-rigid in the solid state, but this occurred via the jumping of the π -bonded C atoms between sites and did not apparently involve the σ -bonded ring.

Reaction of $(\pi - C_5 H_5)$ Fe(CO)₂Cl with CuC₂Ph afforded CLXVII, whose molecular structure has been determined [203]. The Fe–C distance (1.89 Å) was somewhat shorter than that expected for a σ -bond, and the "acetylenic" C-C distance was 1.27 Å. The structure was somewhat related to that of [CuC₂Ph], [204].

The (+)-mentholate, CLXVIII, reacted [205] with LiMe giving (-)-(π -C₅H₅)Fe(CO)(PPh₃)(COMe), and the (-)-mentholate afforded the (+)-acyl. The preferred conformation of (π -C₅H₅)Fe(CO)(PPh₃)Me was [206] CLXIX, whereas of the three possible conformations for (π -C₅H₅)Fe(CO)(PPh₃)CH₂-SiMe₃, CLXX*a*, *b* or *c* would be most likely, and *c* was, in fact, probable.

Treatment of $(\pi$ -C₅H₅)Fe(CO)₂I and of Fe(CO)₄R_fI (R_f = C₂F₅, C₃F₇ or (CF₃)₂CF) with AgC₄F₇ afforded [207] CLXXI and CLXXII, respectively

Cyanide addition to $(\pi - C_5 H_5)Fe(CO)_2 R$ (R = Me or Et) gave [208] [$(\pi - C_5 H_5)Fe(CO)(CN)(COMe)$]⁻ which could be methylated giving $(\pi - C_5 H_5)$ -Fe(CO)(CNMe)(COMe). There was no reaction between CNC_6H_{11} and $(\pi - C_5H_5)Fe(CO)_2$ Me at room temperature, but on refluxing in THF, $(\pi - C_5 H_5)Fe(CO)$ [CN(C_6H_{11})](COMe) was formed [209]; $(\pi - C_5H_5)Fe(CO)$ -(CNBu-t)(CH₂Ph) was formed similarly. With CNC_6H_{11} , the benzyl complex and its $CH_2(p-ClC_6H_4)$ analog, in refluxing THF, afforded CLXXIII. The potentially bidentate (Ph₂AsCH₂CH₂)₂PPh reacted [210] with $(\pi - C_5H_5)Fe$ -(CO)₂Me giving CLXXIV.

Treatment of CLXXV ($\mathbb{R}^1 = \mathbb{M}e$; $\mathbb{R}^2 = \mathbb{R}^3 = \mathbb{H}$) with ClSO₂ NCO afforded [211] CLXXVI, whose reactions with acid and bases are summarised in Scheme 29. It was suggested that initial electrophilic attack of ClSO₂NCO at the C=C bond in CLXXV gave a dipolar olefinic complex which rearranged to CLXXVI via displacement of the coordinated olefin by the N atom. Reaction of CLXXV ($\mathbb{R}^1 = \mathbb{H}$; $\mathbb{R}^2 = \mathbb{R}^3 = \mathbb{M}e$, or $\mathbb{R}^1 = \mathbb{R}^3 = \mathbb{H}$, $\mathbb{R}^2 = \mathbb{P}h$) gave CLXXVII whose formation was ascribed to the relative stabilities of the respective olefinic

Scheme 29

intermediates, with the least substituted and therefore most stable dipolar olefin intermediate collapsing via attack of the N atom at the terminal C atom rather than at the metal.

Insertion of $F_3CC \equiv CCF_3$ into the Ru—C bond in $(\pi - C_5H_5)Ru(PPh_3)_2$ -(CH₂Ph) gave [212] CLXXVIII, a reaction perhaps occurring via metal activation of the *o*-CH bond of the benzyl group. Heating $(\pi - C_5H_5)Ru(PPh_3)_2R$ and $(\pi - C_5H_5)Ru[P(OPh)_3]_2Cl$ in decalin resulted in isolation of CLXXIX and CLXXX, and $(\pi - C_5H_5)Ru(PPh_3)_2Me$ reacted with azobenzene giving CLXXIX and CLXXXI.

The ¹³C NMR spectrum of $[(\pi-C_5H_5)Fe(CO)_2(H_2C=CHMe)](OCOCF_3)$ has been reported [213]. Reduction of epoxides by $[(\pi-C_5H_5)Fe(CO)_2]^$ occurred [214] stereospecifically with complete retention of configuration, and in the presence of other potentially reducible groups, e.g. CHO or CO₂R (Scheme 30). With terminal epoxides, reaction took place rapidly whereas degradation of internal epoxides occurred more slowly, thereby facilitating, for example, isolation of CLXXXII from the corresponding di-epoxide. The stereochemical results were accounted for by initial $S_N 2$ opening of the

epoxide by $[(\pi-C_5H_5)Fe(CO)_2]^-$, followed by *trans* migration of $(\pi-C_5H_5)$ -Fe(CO)₂ concerted with loss of H₂O from the oxonium ion produced by protonation of the alcohol. The intermediary alcohols could be isolated by quenching the reaction with water, so that CLXXXIII could be produced from cyclohexene oxide.

Scheme 30

Reaction of $[(\pi - C_5H_5)Fe(CO)(PPh_3){C(OEt)Me}][PF_6]$ with NaI afforded [215] $(\pi$ -C₅H₅)Fe(CO)(PPh₃)(COMe); the starting material could be regenerated from the acyl by ethylation. With ethoxide ion, the cation afforded $(\pi - C_5 H_5)$ - $Fe(CO)(PPh_3)[C(OEt)CH_2]$ and this was reduced by H_2/PtO or B_2H_6 in ethanol giving $(\pi - C_5 H_5)$ Fe(CO)(PPh₃){CH(OEt)Me}. This last species was formed as enantiomeric pairs which were detected by ¹H NMR spectroscopy. Methoxide ion attack on this species gave $(\pi - C_5H_5)Fe(CO)(PPh_3)[C(OMe)=CH_2]$. Borohydride reduction of this methoxyvinyl derivative afforded $(\pi - C_5 H_5)$ Fe- $(CO)(PPh_3)[CH(OEt)Me]$ and $(\pi - C_5H_5)Fe(CO)(PPh_3)Et$, whereas BD_4^- produced $(\pi - C_5H_5)Fe(CO)(PPh_3)[CD(OEt)Me]$ and $(\pi - C_5H_5)Fe(CO)(PPh_3)CD_2Me;$ $(\pi$ -C₅H₅)Fe(CO)(PPh₃)[CD(OEt)Me] did not react with B₂H₆ with, or without, NaBH₄ in ethanol. Reaction of $(\pi$ -C₅H₅)Fe(CO)(PPh₃)I with Ag⁺ and C₂H₄ provided $[(\pi - C_5H_5)Fe(CO)(PPh_3)(C_2H_4)]^+$ and BH_4^- reduction of this gave the corresponding σ -ethyl derivative. These data suggested that the C(OEt)Me ligand in $[(\pi - C_5H_5)Fe(CO)(PPh_3){C(OEt)Me}]^+$ behaved as a carboxonium rather than carbenoid group. Primary amines, and NH₃, attacked the coordinated ethylene in $[(\pi - C_5H_5)Fe(CO)(PPh_3)(C_2H_4)]^+$ giving carbimonium salts, so that $S(-)-\alpha$ -phenylethylamine afforded $[(\pi - C_5H_5)Fe(CO)(PPh_3) \{C[(S)-NHCHMePh]Me\}\}^+$, as RS and SS isomers, which could be resolved: secondary amines did not react, presumably because of steric problems.

Reduction of FeCl₃ by i-PrMgBr in ether in the presence of cycloheptatriene gave [216] dicycloheptadienyliron, $(\pi$ -C₇H₉)₂Fe. The structure of $(\pi$ -6-Bu-t-1,3,5-Me₃C₆H₂)₂Fe [217] has been determined; the bond distances and angles of the ligands were normal for a π -pentadienyl system and the absence of CH stretching frequencies at 2730–2830 cm⁻¹ indicated [218] that the H atom attached to the t-BuC atom was *endo*.

Compounds containing B

Chlorine and bromine effected [219] cleavage of the Fe—B bond in CLXXXIV causing migration of the 3-o-carboranyl group to the cyclopentadienyl ring (CLXXXV); an intermediate may have been a cyclopentadiene dihalide

Scheme 31

complex of iron(II). However, with the $\sigma(1,2$ -dimethyl-o-carboranyl) ligand, the carboranyl group migrated to a coordinated CO ligand, giving eventually CLXXXVI. The general reactions are summarised in Scheme 31. These carboranyl complexes reacted with PPh₃ by replacement of CO giving $(\pi$ -C₅H₅)Fe(CO)(PPh₃)(o-carboranyl), and with HgCl₂ which caused cleavage of the Fe-B bond.

Reaction of NaB₄C₂H₇ with $(\pi$ -C₅H₅)Fe(CO)₂I afforded [220] CLXXXVII. This, on UV irradiation at -20° gave CLXXXVIII and the paramagnetic CLXXXIX. Treatment of $[(1,7-B_9H_9CHQ)_2Fe]^{2-}$ (Q = P or As) with M(CO)₆ (M = Cr, Mo or W) under UV light caused formation [221] of [{1,7-B₉H₉-CHQ \rightarrow M(CO)₅}₂Fe]²⁻.

Metal cyclobutadiene and arene complexes

The vibrational spectrum of $(\pi$ -C₄H₄)Fe(CO)₃ has been reported and assigned [222]. Reaction of the cyclic diacetylene, CXX (m = 4, n = 6) with Fe(CO)₅ afforded [223] CXCI (m = 4, n = 6 but no tricyclic π -cyclopentadienyl derivatives. However, CXC (m = n = 5) gave with Fe(CO)₅, CXCII (m = 4, n = 5)

(CXC)

(CXCIII)

and CXC (m = n = 4) afforded CXCIII (m = n = 4). While these results indicated that iron carbonyls could form either tricyclic C_4 or C_5 ring systems, the nature of the products was strongly dependent on existing ring sizes in CXC (Scheme 32). Oxidative addition of C_2F_4 , under UV light, to $(\pi - C_4R_4)Fe(CO)_3$ (R = H

Me Me Me Ме $C(CF_3)_2$ **OC** OC Ĺ

а

(CIC)

(CXCVIII)

or Me) gave [224] CXCIV, and $F_3CCF=CF_2$ afforded CXCV. Hexafluorobutadiene provided CXCVI in a mechanism probably involving a 1,3-fluorine shift (Scheme 33). Reaction of $(\pi$ -C₄Me₄)Fe(CO)₃ with (CF₃)₂CO gave two isomers of CXCVII (of which there are three possibilities, a, b and c). Reaction of XCCVIIa with PEt₃ afforded CXCVIII, which also existed as isomers. Treatment of CXCVII with L = (P(OMe)₃ or P(OEt)₃) gave CICa and with PPhMe₂ CICb.

In the presence of Ce^{4+} , $(\pi - C_4H_4)Fe(CO)_3$ reacted with methyldiazoacetate giving [225] CC. Reduction of $[\pi - 1, 2 - C_4H_2(COR)_2]Fe(CO)_3$ (R = 1-naphthyl) with BH₃/BF₃ in THF afforded [226] CCI which, on treatment with Ph₃C⁺ gave CCII. Diborane reduction of $[\pi - 1, 2 - C_4H_2(CHROH)_2]$ -Fe(CO)₃, and reaction of CCII with 1,5-diazobicyclo[4.3.0]non-5-ene, or of the dialcohol with HCl gave CCIII. Diborane and acid treatment of $[\pi - 1, 2 - C_4H_2(COPh)_2]Fe(CO)_3$, however, gave CCIV. The mechanism of these reactions

is summarised in Scheme 34. It has been reported [227] that UV irradiation of $Fe(N_2)(PPh_2Et)_3H_2$ gave $Fe(N_2)(PPh_2Et)_2(C_6H_4PPhEt)H$, but if this irradiation was carried out in the presence of 2,3-dimethylbutadiene, 40-50% of 2,3-dimethyl-2-butene, CCV, N_2 and H_2 were produced [228]. It was suggested

that electronic excitation of the dinitrogen complex gave $Fe(PPh_2Et)_3H_2$ which functioned as the hydrogenating agent. Treatment of CCV with $Fe(CO)_5$ afforded CCVI.

Reaction of $[(\pi-C_5H_5)Fe(\pi-C_6H_5R)]^+$ (R = Ph or CH₂Ph) with ferrocene, Al and AlCl₃ in hot decalin gave [229] CCVII (R = Ph, n = 0; R = CH₂Ph, n = 1). Similar treatment of CCVIII afforded CCIX, and BH₄⁻ reduction provided appropriate neutral complexes.

(CCVII)

(CCVIII)

(CCIX)

RuCl₃ reacted in ethanol with cyclohexa-1,3- or 1,4-diene giving [230, 231] $[(\pi-C_6H_6)RuCl_2]_n$, and n = 1 in solution; toluene, PhOMe, p-Me₂C₆H₄ and p-MeC₆H₄CHMe₂ analogs have also been prepared [231]. Reaction of $[(\pi-C_6H_6)RuCl_2]_n$ with L (tertiary phosphine or phosphite) afforded $(\pi-C_6H_6)RuLCl_2$, and the molecular structure determination [231] of $(\pi-C_6H_6)Ru(PPh_2Me)Cl_2$ and its p-cymene analog established that these complexes had geometries similar to $(\pi-C_6H_6)Cr(CO)_3$. The π -arene and three other ligands were mutually staggered, the arene rings being bent (not tilted) about the C₁--C₄ bond, the dihedral angle being 5° (C₆H₆) and 2° (p-MeC₆H₄-CHMe₂). It was suggested that the asymmetric ring bonding arose from the *trans* bond weakening effect of PPh₂Me. The coordinated C₆H₆ ring was inert to electrophilic attack [230] (acylation, H/D exchange in acid). However, H/D exchange was catalysed by NaOEt in 1/1 EtOD/(CD₃)₂SO, and apparently coordination to the Ru made the arene ring more susceptible to nucleophilic attack. Thus, treatment with CN⁻ afforded a cyanocyclohexadienyl derivative.

Reduction of $[(\pi - C_6H_6)RuCl_2]_n$ with BH_4^- gave small amounts of a cyclohexadienyl species, but mainly $Ru(1,3-C_6H_8)$ -containing compounds which decomposed to cyclohexa-1,3- and -1,4-dienes. Treatment of $[(\pi - C_6H_6)RuCl_2]_n$ with HgMe₂ in the presence of PPh₃ gave [232] $(\pi - C_6H_6)Ru)(PPh_3)Cl_2$ and $(\pi - C_6H_6)Ru(PPh_3)ClMe$: similar treatment with HgEt₂ gave $Ru(PPh_3)_3ClEt$, and with HgPh₂ $(\pi - C_6H_6)Ru(PPh_3)ClPh$. With $Sn(C_3H_5)_4$, $(\pi - C_6H_6)Ru(\pi - C_3H_5)Cl$ was formed, and TlC_5H_5 afforded $[(\pi - C_5H_5)Ru(\pi - C_6H_6)]Cl$.

The crystal structure determination of $(\pi - C_6 Me_6)_2 Ru$ revealed [233] that one ring was planar whereas the other was bent about the $C_1 - C_4$ axis by ca. 43°. In the latter, four C atoms were bonded to the metal as a *cis*-buta-1,3-dienoidal species, the $C_1 \rightarrow C_4$ plane being nearly parallel to that of the other ring. The C-C distance of the uncomplexed fragment was 1.33 Å, whereas the C-C distances of the planar ring were 1.41 Å (those in $(\pi - C_6 Me_6)Cr(CO)_3$ were [234] 1.42 Å).

Metal olefin complexes

Non-cyclic species

A vibrational spectral analysis has been made of $Fe(C_2H_4)(CO)_4$ [235]. Ru(PPh₃)₄H₂ reacted [236] with CH₂=CHR (R = H or Ph) giving Ru(PPh₃)₃-(CH₂=CHR), PPh₃ and C₂H₅R. The styrene complex was unstable in organic solvents, being converted in toluene to some Ru(PPh₃)₃H₂ and ethylbenzene. Reaction of the hydride with C₂Cl₄ gave Ru(PPh₃)₃(C₂Cl₄). When Ru(PPh₃)₃-(C₂H₄) was heated, C₂H₆ was formed, possibly via a Ru—Et intermediate, the extra H atom being acquired from an o-C atom on a Ph ring in PPh₃. Reaction of the ethylene complex with C₂D₄ in benzene afforded C₂H_nD_{4-n} (n = 0 - 4), and on oxidation of the metal complex, the Ph₃PO produced also contained D at the ortho positions in the phenyl rings.

Treatment of $Os(CO)(NO)(PPh_3)_2Cl$ with Ag⁺ in acetone gave [237] $[Os(CO)(NO)(PPh_3)_2(acetone)]^+$ which reacted with C_2H_4 giving CCX. The ethylene ligand was shown, by a combination of ¹H, ¹³C and ³¹P NMR spectral methods, to rotate about the Os—olefin axis.

Reaction of $Fe_2(CO)_9$ with $CH_2=CHOSiMe_3$ gave [238] CCXI whose reaction are summarised in Scheme 35. The reactivity of the coordinated maleic anhydride in $Fe(C_2H_2C_2O_3)(CO)_4$ resembled [239] that of the free olefin. Each enantiomer of PhMeCHN=CH(CO₂Et) reacted [240] with $Fe_2(CO)_9$ giving a mixture of two diastereomeric complexes, CCXII; the D(-)-imine species was isolated optically pure. Reaction of L(+)-CCXII with PhCH₂Br followed by reduction (H₂/Pt) and base hydrolysis, gave D(+)-phenylalanine in 53% yield with 77% optical purity; the D(-)-imine

complex likewise afforded L(-)-phenylalanine. Aspartic acid and o-methyltyrosine were obtained in yields of ca. 26% with optical purities greater than 78% using EtO_2CCH_2Br and o-MeC₆H₄CH₂Br. No significant amounts of alanine could be obtained from CCXII and MeI, but MeCOCl afforded threonine and alanine perhaps via a decarbonylation of an intermediary acyl species.

Reaction of 1,1-dimethylbutadiene with $Fe(CO)_5$ afforded [241] CCXIII whereas 1,4-dimethylbutadiene gave CCXIV. The driving force for the

isomerisation was believed to be the relief of ring strain between anti methyl substituents of the 1,1-dimethylbutadiene and the Fe atom, and the anti-H atom on the other terminal C atom in the proposed intermediate CCXV. The proposed mechanism of isomerism is depicted in Scheme 36. In the formation of CCXIV, the proposed intermediate is CCXVI where the Me substituent of the uncoordinated olefin has a syn configuration and so cannot participate in H transfer to the Fe atom. The CO stretching frequencies in p-substituted 1-phenylbuta-1,3-diene iron tricarbonyls were linearly related [242] to the Hammett σ_p function for the p-substituents (NH₂, NHAc, OMe, Br, CN, OCOMe, H). The effect was related to the extent of d_{π} — p_{π} bonding from the metal to the CO groups.

Scheme 36 References p. 514

Using the lanthanide shift reagent Eu(Fod)₃, the conformations of disymmetric alcohol derivatives of diene iron tricarbonyls obtained by different stereospecific reactions were determined [243]. Thus CCXVII, on borohydride reduction afforded CCXVIII, with a ψ -exo configuration, whereas hydrolysis

Scheme 37

of CCXIX gave CCXX with a ψ -endo configuration. The structure of CCXX indicated that hydrolysis of CCXIX led to RS and SR racemates, rather than RR and SS forms. The mechanism of these reactions may be as shown in Scheme 37. Reduction by borohydride in methanol of CCXXI gave [244] the endo species CCXXII, whereas reaction of CCXXIII with Fe(CO)₅ afforded 34% of CCXXII and 38% of the exo species CCXXIV. The reactions of CCXXV,

obtained from MeCH=CHC(Me)=CHCOMe and $Fe_2(CO)_9$, are summarised in Scheme 38 (R = H or 3,5-dinitrobenzovl). All ψ -exo esters solvolysed more rapidly than any of their ψ -endo analogs, but the low reactivity of CCXXIV could be attributed to steric hindrance. There was conclusive evidence that the leaving group in the solvolysis reactions departed exo to the Fe atom. Protonation of CCXXVI gave [245], in equal amounts, CCXXVII and CCXXVIII. The ratio represented the kinetically controlled product distribution and indicated that the unprotonated aldehyde was present in equally populated S-cis and S-trans forms. Both cations isomerised to CCXXIX.

Butadiene iron tricarbonyl was 3800 times more reactive [246] towards Friedel—Crafts acylation than benzene, the initial product being CCXXX. Assuming a partial rate factor for $Fe(C_4H_6)(CO)_3$ of unity, the rates of acylation of related diene complexes are given in Fig. 1.

UV irradiation of styrene, and substituted analogs, with $Fe(CO)_5$ gave [247] CCXXXI, CCXXXII and CCXXXIII. Chemical and spectral evidence indicated that in CCXXXII and CCXXXIII, the aromaticity of the benzene ring had been destroyed. This was confirmed by a crystallographic examination of CCXXXIV [248], where the $Fe(CO)_3$ groups were *trans* with respect to the

hydrocarbon. The angle between the planes of the two "isoprene" fragments was 37.4°, and the lack of aromatic properties of the benzene ring was thought to be derived from the formation of two isoprene-type complexes appreciably isolated from each other, rather than to bond fixation in the benzene ring. Styrenes with *meta* substituents gave positional isomers for complexes of the type CCXXXIII, but benzene species with α,β unsaturated rings attached did not give complexes analogous to CCXXXI or CCXXXII. Styrene could be converted sequentially to CCXXXI, CCXXXII and CCXXXIII in the dark using $Fe_2(CO)_9$, and CCXXXII was converted to CCXXXIII also in the dark. However, the conversion of CCXXXI to CCXXXII alone would occur only in light. Reaction of CCXXXV with $Fe_2(CO)_9$ afforded CCXXXVI and CCXXXVII.

Reaction of Fe₂(CO)₉ with α,β -unsaturated ketones (PhCH=CHCOR, R = Me or Ph; PhMeC=CHCOPh) afforded $Fe(CO)_4$ and $Fe(CO)_3$ complexes [249]. Fe(PhCH=CHCOMe)(CO)₃ reacted with PPh₃ giving $Fe(CO)_3(PPh_3)_2$ more readily than $Fe(C_4H_6)(CO)_3$ or its cinnemaldehydeanil analog. It also reacted with 8,8-diphenylheptafulvene giving the appropriate $Fe(diene)(CO)_3$ complex. With 7-hydroxymethyl cycloheptatriene and dimethyl-7 cycloheptatrienylmethanol, CCXXXVIII and CCXXXIX were produced. Cinnemaldehydeanil reacted [250] with iron carbonyls giving CCXL. The species CCXLI, CCXLII (R = OH or H) and CCXLIII (R^1 , $R^2 = H$, Cl or OMe) were also prepared and it was shown that charge transfer occurred from essentially non-bonding metal orbitals into π^* orbitals on the ligands. Protonation of CCXL occurred at the N atom, and these species containing hetero-O atoms behaved similarly; ketonic groups lost their characteristic properties on coordination. The molecular structure determinations of Fe(PhCH=CHCHO)- $(CO)_3$ [251] and Fe(PhCH=CHCH=NPh)(CO)_3 [252] showed that the C=C-C=X (X = O or N) group was coplanar and that the lone pairs on X did not play an important part in bonding.

Reduction of FeCl₃ with i-PrMgCl in ether in the presence of C_8H_8 or a non-cyclic diolefin, followed by carbonylation at moderate pressures, afforded [253] Fe(C_4H_6)₂(CO), Fe(C_5H_8)₂(CO), (C_5H_8 = isoprene) and its 1,3-pentadiene isomer, Fe(C_4H_6)(C_8H_8)(CO) and Fe(C_5H_8)(C_8H_8)(CO). In the presence of protic acids, those species not containing C_8H_8 induced butadiene polymerisation

whereas $Fe(C_4H_6)(C_8H_8)(CO)$ reacted with HCl giving $Fe(C_4H_6)(C_8H_9)(CO)Cl$; in the absence of acid $Fe(C_4H_6)(C_8H_8)(CO)$ promoted the oligomerisation of C_4H_6 although the overall activity of these catalysts was lower than that of $Fe(C_8H_8)_2$. The complex $Fe(C_4H_6)_2(CO)$ was prepared [254, 255] by condensation of evaporated Fe atoms with butadiene followed by CO; replacement of CO by PF₃ gave $Fe(C_4H_6)_2(PF_3)$. Reaction of Fe atoms with cyclohexa-1,3-diene gave [255], together with cyclohexene and benzene, $Fe(C_6H_6)(C_6H_8)$, and with toluene and PF₃ or C_4H_6 , $Fe(C_6H_5Me)(PF_3)_2$ or $Fe(C_6H_5Me)(C_4H_6)$ respectively. The vibrational spectrum of $Fe(C_4H_6)_2(CO)$ has been assigned [256], and the molecular structure of $Fe(C_4H_6)(C_8H_8)(CO)$ determined [257]. In the latter, the C_8H_8 ring adopted a chair conformation, and the two butadienoidal C_4 fragments had the expected dimensions.

Cyclic olefins

Methane chemical ionisation mass spectrometric studies of cyclobutadiene, norbornadiene, tropone, heptafulvene and cyclooctatetraeneiron tricarbonyls have been reported [258].

UV irradiation of Fe(PF₃)₅ with C₅H₆ afforded [259] Fe(C₅H₆)(PF₃)₃ which, in the presence of weak bases, gave $(\pi$ -C₅H₅)Fe(PF₃)₂H; the last reacted with KOBu-t affording K[$(\pi$ -C₅H₅)Fe(PF₃)₂]. 1-Acetylpentamethylcyclopentadiene reacted [260] with Fe(CO)₅ giving [$(\pi$ -C₅Me₅)Fe(CO)₂]₂ but with Fe₂(CO)₉ afforded Fe[C₅Me₅(COMe)](CO)₃ and $(\pi$ -C₅Me₅)Fe(CO)₂(COMe). Thiophen-1,1-dioxides, on UV irradiation with Fe₂(CO)₉ giving [262] CCXLIV and

CCXLV; the reaction involved the first reported reduction of a ketonic group by $Fe_2(CO)_9$ and the ligand trapped in CCXLV was believed to be the product of UV irradiation of solid santonin.

 $Fe(C_6H_8)(CO)_3$ reacted with PF₃ giving [263] the stereochemically non-rigid $Fe(C_6H_8)(CO)_{3-x}(PF_3)_x$: when x = 1 or 2, two isomers could be detected but not separated. Reaction of CCXLVI with iron carbonyls gave

(CCLI)

CCXLVII, CCXLVIII, CCXLIX, CCL and CCLI. Both cyclohexadienoneand cycloheptadienoneiron tricarbonyls underwent the Reformatsky reaction with MeO_2CCH_2Br and $MeO_2CCHMeBr$ (Schemes 39 and 40) [265]. Reaction of the hydroxy species so formed with Ph_3C^+ afforded dienyl salts which could be reduced to diene complexes by BH_4^- (Scheme 39) or deprotonated giving References p. 514

 $(Fe(CO)_3 \text{ omitted for clarity})$

Scheme 39

trienes in which there was an *exo*-cyclic double bond. $Ru_3(CO)_{12}$ reacted with 1-methoxycyclohexa-1,3- or -1,4-diene giving some CCLII and mostly CCLIII. Treatment of the last with Ph_3C^+ and then water afforded CCLIV.

The complexes $[Ru(diene)(N_2H_4)_4][BPh_4]_2$ (diene = cycloocta-1,5-diene, norbornadiene) and $[Ru(C_8H_{12})HL_3][BPh_4]$ (L = N_2H_4 , NH_2NMe_2) have been prepared [266] and are useful precursors for the syntheses of Ru^{11} compounds. Atmospheric pressure carbonylation of $[Ru(diene)Cl_2]_2$ (diene = norbornadiene or "bidentate" benzene), in the absence of added reducing agent afforded [267] $[Ru(CO)_3Cl_2]_2$, which reacted with ethanol (reversibly) giving $[Ru(CO)_2(EtOH)Cl_2]_n$. In the presence of hydrazine, carbonylation of the diene complexes gave a mixture of $[RuL(NH_3)_5]Cl_2$ (L = CO or N₂). When PPh₃ was added to this system, the ammines were again formed together with *trans*-Ru(CO)_3(PPh_3)_2. If the carbonylation was effected in the presence of zinc, variable yields of $Ru_3(CO)_{12}$ were obtained together with CCLV and $Ru_4(CO)_{12}H_4$. Atmospheric pressure carbonylation of $[(\pi-C_6H_6)RuCl_2]_n$ in ethanol containing LiOCOMe in the presence of Zn gave a ca. 50% yields of $Ru_4(CO)_{13}H_2$.

The molecular structure determination of azepine iron tricarbonyl, CCLVI, showed [268] that the uncoordinated N—C=C and C₄ groups were not coplanar. In CF₃CO₂H, protonation of cycloheptatrienoneiron tricarbonyl, giving CCLVII, occurred [269] specifically from the *exo* side of the ring, at a C atom adjacent to the keto group. In H₂SO₄, however, protonation was not stereoselective, occurring probably from either the *endo* or *exo* side of the ring.

Scheme 41

CCLVII could be reduced to CCLVIII using SiHEt₃. These reactions, including deuteriation studies. are summarised in Scheme 41. Cycloheptatriene iron tricarbonyl underwent [270] a series of electrophilic attacks depicted in Scheme 42. Acetylation of $Fe(C_7H_8)(CO)_3$ gave $[Fe(C_7H_8OCOMe)(CO)_3]^+$ which could not be deprotonated. However, deprotonation of $[Fe(C_7H_8 - OCOMe)(CO)_3]^+$ which was produced by protonation of $Fe(C_7H_7OCOMe)$ -(CO)₃, was readily accomplished. These, and related data [271], served to

indicate that the former protonated species had an *exo* acetyl group, whereas the latter had an *endo* acetyl group. Protonation of $Fe(C_7H_7CHO)(CO)_3$ afforded CCLIX and $Fe(C_7H_7COMe)(CO)_3$ gave the unstable CCLX which rearranged to CCLXI.

Reaction of *cis*-bicyclo[6.2.0]deca-2,4,6-triene with Fe₂(CO)₉ afforded [272], after chromatography, CCLXII, which was not fluxional, CCLXIII and CCLXIV (three possible structures are shown). The fluxional nature of benzoand naphtho-cyclooctatetraeneiron tricarbonyls is shown in Scheme 43 (the activation energies for the first and second processes were 18.6 and 31 kcal/mole whereas that for Fe(C₈H₈)(CO)₃ was 7.2 kcal/mole). The activation energy for the rearrangement of CCLXV was 8.1 kcal/mole; a CO group attached to the allylically bonded Fe atom could be displaced by PPh₃. The complexes CCLXVI, where $Q = \rangle$ or \rightarrow Fe(CO)₃, reacted [274] with CO giving CCLXVII, whereas when $Q = \rightarrow$ Fe(CO)₄, CO uptake was slow, and at high pressures the Fe(CO)₄ group was removed leaving CCLXVI (Q =). Reaction of CCLXVI ($Q = \rangle$ or \rightarrow Fe(CO)₃) with PPh₃ gave CCLXVIII, but when $Q = \rightarrow$ Fe(CO)₄, the products were CCLXVI (Q =) and Fe(CO)₄(PPh₃). Neither CCLXIX nor CCLXX reacted with CO or PPh₃.

(CCLXV)

(CCLXVI)

Fe(CO)₃ Fe (CO)₃ (CCLXX)

(CCLXIX)

References p. 514

Bullvalene reacted with $Fe_2(CO)_9$ giving CCLXXI, whose structure has been determined crystallographically [275], and the known CCLXXII [276].

¹³C NMR spectral studies [277] of $Fe(C_8H_8)(CO)_3$ over a temperature range were in agreement with ¹H NMR spectral investigations. The CO groups also underwent site exchange independent of the ring rearrangements. Broad-line ¹H NMR studies of $Fe(C_8H_8)(CO)_3$ and $Fe_2(C_8H_8)(CO)_5$ showed [278] that, in the solid state, the former was non-rigid whereas the latter was rigid. In the presence of oxygen, no product was obtained [279] when $Fe(C_8H_8)(CO)_3$ was irradiated with UV light, but in the absence of oxygen, CCLXXIII was produced [280], together with C_8H_8 and CO; CCLXXIII was also prepared by irradiation of $Fe_2(C_8H_8)(CO)_{6-}$

At -120° , treatment of Fe(C₈H₈)(CO)₃ with FSO₃H/SO₂ClF gave [281] CCLXXXIV. On warming this collapsed to CCLXXV which, after 24 h in H₂SO₄ at 35° may have given CCLXXVI. Similar treatment of the methylcyclooctatetraene analog gave CCLXXVII which collapsed to CCLXXVIII, and CCLXXIX which collapsed to CCLXXX (Scheme 44). Collapse of CCLXXVII to CCLXXVIII occurred much more slowly than that of CCLXXIX implying, possibly, that the positive charge at the central γ -C atom in these cationic pentadienyl complexes may be somewhat greater than that at the α -C atom.

When the adduct of $Fe(C_8H_8)(CO)_3$ and $(NC)_2C=C(CN)_2$ was treated [282] with Ce⁴⁺, either CCLXXXI or CCLXXXII (probably the former) was formed. FeCl₃ oxidative degradation of CCLXXXIII gave CCLXXXIV. In terms of the cycloadditions of $(NC)_2C=C(CN)_2$ occurring via electrophilic attack [283], the mechanism of adduct formation with cycloheptatriene and cyclooctatetraene complexes, and their oxidative degradation, may be as depicted in Scheme 45.

Reaction of 12-oxa[4.4.3] propella-2,4,7,9-tetraene with $Fe_2(CO)_9$ gave CCLXXXV whose structure was established [284] crystallographically. UV irradiation of the iron tricarbonyl complexes of cyclooctatetraene dimers, CCLXXXVI and CCLXXXVII, with more $Fe(CO)_5$ afforded [285] CCLXXXVIII;

the two Fe atoms were symmetrically positioned with respect to the allyl group. The formation of CCLXXXVIII implied that CCLXXXVII isomerised to CCLXXXVI prior to reaction with $Fe(CO)_5$.

Broad-line ¹H NMR spectral studies of $Ru_3(C_8H_8)_2(CO)_4$ showed [286] that, in the solid state, the rings were undergoing rearrangement via a series of 1,2-shifts.

Allyl and trimethylenemethane complexes

Protonation of butadiene- and isopreneiron tricarbonyls, and CCLXXXVII gave [287] allyl tricarbonyl cations, which, on standing, afforded the π -allyl tetracarbonyl cations, CCLXXXVIII. It appeared that protonation preceded CO transfer. In CF₃CO₂H, CCLXXXVIII [288] (all R = Me) or (R¹ = i-Pr, R² = R³ = R⁴ = H, R⁵ = Me) gave a mixture of both species; in CF₃CO₂D no incorporation of D occurred. CCLXXXVIII (R¹ = R² = Me, R³ = R⁴ = R⁵ = H)

in CF_3CO_2H contained small amounts of $(R^1 = R^5 = Me, R^2 = R^3 = R^4 = H)$, and in CF_3CO_2D complete deuteration occurred at the *anti*-methyl substituents, and at positions R^3 and R^4 in CCLXXXVIII ($R^1 = R^2 = Me, R^3 = R^4 = R^5 = H$) and at R^1 in ($R^1 = R^5 = Me, R^2 = R^3 = R^4 = H$). In CCLXXXVIII ($R^1 = Me, R^2 = R^3 = R^4 = R^5 = H$), D incorporation occurred at positions R^3 and R^4 as well as at the methyl group, and in ($R^1 = R^3 = Me, R^2 = R^4 = R^5 = H$) D was incorporated slowly at the methyl groups only. In CCLXXXVIII ($R^1 = R^3 = R^4 = R^5 = H, R^2 = Et$) no D uptake, even over long periods, was observed.

(CCXCVI)

Reaction of $CH_2=C(OMe)CH_2X$ (X = Br or I) with $Fe_2(CO)_9$ gave [289] the π -allyl complex CCLXXXIX but when X = Cl, CCXC was formed; CCLXXXIX could also be obtained using MeC(OMe)=CHX. Treatment of XCCI with PPh₃ afforded [290] CCXCII which eventually decarbonylated giving CCXCIII. Reaction of $(\pi$ -C₃H₅)Fe(CO)₃I with the trispyrazolylborato ion [HB(Pyz)₃]⁻ gave [291] Fe[HB(Pyz)₃]₂ (56%), CCXCIV (2.6%), CCXCV (ca. 1%), Fe(CO)₂[HB(Pyz)₃] (CH=CHMe) (ca. 1%), and Fe(CO)₂[HB(Pyz)₃]-(COCH=CHMe) (28%). The proposed mechanism is given in Scheme 46. The allyl iodide reacted with [H₂B(Pyz)₂]⁻ giving CCXCVI.

2-Methoxy-azabullvalene reacted with $Fe_2(CO)_9$ giving [292] CCXCVII and CCXCVIII. Hydride abstraction from $Ru(C_8H_{12})(CO)_3(C_8H_{12} = cycloocta-1,5-diene)$ followed by addition of CN^- afforded [293] CCXCIX.

(CCCII)

References p. 514

Treatment of CCC with Fe₂(CO)₉ afforded the binuclear bis- π -allyl CCCI [294]. The molecular structure determination of $(\pi$ -C₃H₅)₂Ru(PPh₃)₂, CCCII revealed [295] that the bond angles between the central allylic C atoms, and Ru and P atoms, were all close to tetrahedral. This, together with the shortness of the Ru—central C atom distance (2.13 Å compared with 2.24 Å), suggested that the Ru atom was tetrahedrally coordinated to the central allylic C atom, and that a significant degree of σ -bonding was involved.

Scheme 47

Various trimethylenemethaneiron tricarbonyl complexes, especially CCCIII. have been prepared [296] by either dehalogenation of 3-halo(2-halomethyl)propenes with Fe₂(CO)₉ or by thermal disproportionation of 2-methylallyiron tricarbonyl complexes (Scheme 47). Dehalogenation of tris(bromomethyl)ethylene using excess of Fe₂(CO)₉ afforded CCCIV. Thermolysis of CCCV or CCCVI did not give trimethylenemethane complexes but instead provided dieneiron tricarbonyls; reaction of 1,1,2-trimethylallyl bromide with Fe₂(CO)₉ gave only CCCVII. Alane and AlCl₃ reduction of CCCVIII gave isopreneiron

tricarbonyl and CCCIX. Benzoyl chloride addition to CCCVIII gave CCCX and, eventually, CCCXI. Acid hydrolysis of CCCIX or its 1,1-dimethyl analog afforded isopreneiron tricarbonyl or CCCVII, respectively. The mechanism of formation of CCCVIII from 3-bromo(3-bromomethyl)propene is depicted in Scheme 48.

Scheme 48

Treatment of CCCXII with $Fe_2(CO)_9$ gave [297] CCCXIII. The vibrational spectrum of CCCXIII has been assigned [298] and CCCXIII reacted with PF_3 giving $Fe[C(CH_2)_3](CO)_{3-x}(PF_3)_x$ (x = 1, 2 or 3) [299]. The ¹⁹F NMR spectrum of the last indicated that there was hindered rotation of the $Fe(CO)_{3-x}(PF_3)_x$ group relative to the trimethylenemethane ligand.

Allene reacted with Fe₃(CO)₁₂ giving [300] CCCXIV which isomerised at 100-110° in toluene or o-dichlorobenzene afforded CCCXV. Either of these two compounds in refluxing toluene or o-dichlorobenzene gave CCCXVI. The structures of all three species have been determined [301]. Polymerisation of the allene occurred when an excess was added to any of these in *n*-hexane.

Alkyl- and aryl-metal complexes

Reaction of $Fe(CO)_5$ with LiR, or of $Na_2[Fe(CO)_4]$ with RCOCl afforded [302] the acyl[Fe(CO)₄(COR)]⁻, and the closely related alkyls were obtained by reaction of $[Fe(CO)_{4}]^{2-}$ with RX; these compounds were isolated as $[(Ph_2P)_2N]^+$ salts. Reaction of $[Fe(CO)_4(CH_2Ph)]^-$ with MeI gave Me(PhCH₂)CO, and of $[Fe(CO)_4(COCH_2Ph)]^-$ with MeI and with acetic acid afforded Me(PhCH₂)CO and PhCH₂CHO, respectively. These reactions have been generalised [303] providing a selective synthesis of aliphatic ketones (Scheme 49). Thus treatment of the intermediates CCCXVII or CCCXVIII with an alkyl

Scheme 49

halide led to isolation of RR'CO. The nucleophilicity of the carbonylate ions towards attack of RX decreased in the order $[Fe(CO)_4]^{2-} > [Fe(CO)_4R]^{-}$ > $[Fe(CO)_3(PPh_3)(COR)]^- > [Fe(CO)_4(COR)]^-$. It was suggested that formation of $[Fe(CO)_4R]^-$ occurred with inversion of configuration at R, and carbonylation giving $[Fe(CO)_4(COR)]^-$ apparently occurred with retention of configuration. The ion $[Fe(CO)_4]^{2-}$ was apparently unreactive towards some functional groups, e.g. reaction with $Br(CH_2)_4CO_2Et$ and EtI gave $EtCO(CH_2)_4CO_2Et$. The migration of the allyl group to CO, thereby affording an acyl complex, was strongly influenced [304] by the nature of the counter cations associated with $[Fe(CO)_4R]^-$ and $[Fe(CO)_4(COR)]^-$.

Reaction of the cyclic silane CCCXIX with $Fe_2(CO)_9$ afforded [305] CCCXX, also produced by treatment of $ClCH_2CH_2CH_2SiMe_2Cl$ and $[Fe(CO)_4]^2$ Hydrolysis of CCCXX gave $MeCH_2CH_2SiMe_2(OH)$ and $(MeCH_2CH_2SiMe_2)_2O$, reaction with PR₃ gave organosilicon polymers, $Fe(CO)_4(PR_3)$ and $Fe(CO)_3$ - $(PR_3)_2$, and thermolysis gave $Fe(CO)_5$ and traces of organosilanes.

Treatment of $Fe_2(CO)_6(\mu$ -SCF₃)₂ with $F_3CC\equiv CCF_3$ afforded [306] CCCXXI whose molecular structure was determined; the C-C bond length was 1.34 Å, and the Fe-Fe distance 3.27 Å (i.e. non-bonding). the Fe_2S_2 was appreciably non-planar-Reaction of CCCXXII with $Fe_2(CO)_9$ gave [307]

CCCXXIII. Reaction of the last with $Ph_2PCH_2CH_2PPh_2$ caused displacement of two CO groups and formation of a diphos complex, whereas reaction with Ce^{4+} gave CCCXXIV. The structure determination of CCCXXIII revealed that the molecule was folded about the C—C bond fusing the two indane fragments. $Fe_3(CO)_{12}$ reacted with 2,4-hexadiyne in boiling toluene giving CCCXXV and CCCXXVI; the former was presumably the precursor of the latter [308].

 $[Ru(CO)_3Cl_2]_2$ reacted with PhCH=NMe (BzmH) giving [309] $[Ru(CO)_2Cl(Bzm)]_2$, and this Schiff base, or PhCH=NPh, reacted with $Ru_3(CO)_{12}$ giving CCCXXVII. These bases did not react with $(\pi$ -C₅H₅)Fe-(CO)₂Me, and with $[(\pi$ -C₅H₅)Fe(CO)₂]_2 afforded only $[(\pi$ -C₅H₅)Fe(CO)]_4. By heating in decalin $Ru_3(CO)_9[P(OPh)_3]_3$, two isomers of $Ru(CO)_2$ -

 $[P(OC_6H_4)(OPh)_2]_2$, $Ru_4(CO)_9[P(OPh)_3]_3H_4$ and $Ru_2(CO)_3[P(OC_6H_4)-$

(CCCXXVII)

(CCCXXVIII)

(CCCXXIX)

 $(OPh)_2]_2[OP(OPh)_2]H$, CCCXXVIII, were formed [310]. Ru(CO)_2[P(OC₆H₄)-(OPh)_2]_2 could also be obtained [311] from Ru(CO)_2[P(OPh)_3]_2Cl₂. The structure of CCCXXVIII was determined crystallographically and the Ru—Ru distance was 2.89 Å. One o-metallated P(OC₆H₄)(OPh)₂ group was primarily attached to Ru₁ and the Ru₁—P distance was the shortest yet detected. The other o-metallated phosphite was bonded to Ru₂ and Ru₁, the o- and m-C atoms of the metallated ring being within bonding distance of Ru₁ while Ru₂ was bonded to the ortho C atom. It was suggested that the interaction was best described in terms of a four-centre three electron contribution from the bridging aryl group to the two metal atoms. There was thought to be some similarity between this interaction and that involving the "benzyne" ligand and the Os atoms in Os₃(CO)₁₀(PPh₂)₂(C₆H₄) and its analogs [95, 96].

The diamagnetic norbornyl complex CCCXXIX was obtained [312] by treating $\text{LiC}_7\text{H}_{11}$ with FeCl₃, whereas Li_5FePh_5 was obtained [313] by treating FeCl₃ in LiPh under very mild conditions. Hydrolysis of the pentaphenyl gave biphenyl and Fe(OH)₂, whereas HgCl₂ afforded FeCl₂, LiCl, Hg and HgPhCl.

Reaction of $Fe(N_2)(PPh_2Et)_3H_2$ with C_2H_4 in solution gave [314] $Fe(PPh_2Et)_3HEt$, or the solvated (S) species $Fe(PPh_2Et)_2(S)HEt$, probably via the intermediate $Fe(PPh_2Et)_2L(C_2H_4)H$ (L = PPh_2Et or solvent). Reduction of $Fe(Acac)_3$ with PPh₃ and AlEt₃ at -30° gave [315] the paramagnetic $Fe(PPh_3)_3Et(Acac)$. This compound initiated polymerisation of styrene, acrylo- and methacrylonitrile. Disproportionation occurred in polar solvents with release of C_2H_6 . Reduction using AlPr₃ gave $Fe(PPh_3)_3Pr(Acac)$ and with AlMe₃Fe(PPh₃)₃Me₂. Thermal decomposition or alcoholysis of the latter gave methane. Alkyl derivatives were not formed when AlHEt₂ or AlMe₂(OEt) were used as reducing agents. Reaction of organoiron phthalocyanin complexes, $[RFePc]^{n-}$ (R = Me or Ph, n = 0 or 1) with styrene in the presence of Li₂PdCl₄ afforded [316] PhCH=CHR. Introduction of anhydrous FeCl₃ into a THF solution containing Mg metal under nitrogen caused [317] degradation of the THF thereby generating an unsaturated hydrocarbon. This was picked up by the Fe giving uncharacterised σ -bonded species, C_4H_5 FeCl₂Mg(THF)₂. 6H₂O and/or (C_4H_5)₂FeCl₇Mg₂(THF)₄.6H₂O.

Organometallic complexes in synthesis and catalysis

Selective reduction of RCH=CHCOR' to RCH_2CH_2COR' was achieved [318] using $Fe(CO)_5$ in slightly wet basic solvents. Phthalazine was reduced [319] to 1,2-dihydrophthalazine and $Fe_2(CO)_6(\mu-N_2C_8H_8)$ using $Fe_3(CO)_{12}$, and a number of Schiff bases derived from aniline could be reduced similarly.

The complexes $\operatorname{Ru}(\operatorname{PPh}_3)_3\operatorname{HCl}$ and $\operatorname{Ru}(\operatorname{PPh}_3)_3\operatorname{Cl}_2$ caused [320] a random redistribution of D in *trans*-C₂H₂D₂, via an ethyl intermediate. The hydride complex was more active than its dichloro analog, and H/D exchange was observed between C₂H₂D₂ and the H atom in the *ortho* positions of the PPh₃ ligands in the hydride. H/D isotopic exchange between D₂, and acetic acid, MeOH, EtOH or morpholine was observed [321] in the presence of $\operatorname{Ru}(\operatorname{PPh}_3)_3\operatorname{Cl}_2$ or Os(PPh₃)₃Br₂(Fe(PPh₃)₂Cl₂ was inactive). The proposed mechanism is shown in Scheme 50.

Scheme 50

Scheme 51

 $(P = PPh_3; S = Solvent)$

Rearrangement of CCCXXX to CCCXXXI and CCCXXXII, but not CCCXXXIII, was catalysed [322] by $[Ru(CO)_3Cl_2]_2$. CCCXXXIV was isomerised [323] to CCCXXXV and CCCXXXVI, and CCCXXXVII to CCCXXXVIII by $Ru_3(CO)_{12}$, $[Ru(CO)_3Cl_2]_2$ or $RuCl_3$. Pent-1-ene was isomerised [324] by $Ru(PPh_3)_3HCl$ in benzene to *cis*- (60%) and *trans*-(40%)pent-2-ene. Both the *cis*- and *trans*-forms could be formed via a mechanism involving a pentyl intermediate (Scheme 51), but the *trans*-isomer could also be produced via a π -allylic intermediate (Scheme 52).

Condensation of RCH_2CH_2OH in the presence of alkoxides giving $RCH_2CH_2CHRCH_2OH$ (90%) was catalysed [325] by a mixture of $RuCl_3 \cdot nH_2O$ and PBu₃ (molar ratio 1/4). Addition of RCHO and PhNCO, giving RCH=NPh (R = MeCH=CH, PhCH=CH or Ph) was catalysed [326] by Fe(CO)₅. The pentacarbonyl reacted with a variety of primary, secondary or tertiary alkyl and aryl α -haloketones in refluxing dimethoxyethane giving [327] coupled 1,4-diketones and reduced monoketones (Scheme 53). The intermediate CCCXXXIX may have the π -oxallyl structure or may be a binuclear allyl derivative having halide (X) bridges. Reaction of RSO₂Cl with Fe(CO)₅ afforded RSO₂SO₂R and RSSO₂R.

Scheme 54

Scheme 55

Reaction of α, α' -dibromoketones with enamines in the presence of Fe₂(CO)₉ afforded [328] cyclopentenone (Scheme 54). Species produced by this reaction are illustrated in Fig. 2. The mechanism of reaction of these dibromoketones with Fe₂(CO)₉ in the presence of olefins is summarised [329] in Scheme 55. In the absence of olefines, internal reactions occurred, as shown in Scheme 56. It would appear that in all these reactions, the allyl species CCCXL is implicated.

Irradiation of $Os_3(CO)_{12}$ in the presence of organic halides initiated [330] the polymerisation of methylmethacrylate and acrylonitrile. The species produced by photoexcitation was shown to abstract H atoms from hydrocarbons thereby forming free radicals. Irradiation of $Os_3(CO)_{12}$ in cyclohexane was shown by IR spectroscopy to afford a mixture of $O_{s_3}(CO)_{10}H_2$, $O_{s_3}(CO)_{10}$ H(OH), $Os_4(CO)_{13}H_2$ and $Os_4(CO)_{12}H_4$.

References

- 1 F.E. Saalfeld, J.J. De Corpo and M.V. McDowell, J. Organometal. Chem., 44 (1972) 333.
- 2 H. Schumann, G. Pfeifer and H. Roser, J. Organometal. Chem., 44 (1972) C10.
- 3 L.H. Bowen, P.E. Garrou and G.G. Long, Inorg. Chem., 11 (1972) 182.
- 4 R.L. Bennett, M.I. Bruce and F.G.A. Stone, J. Organometal. Chem., 38 (1972) 325.
- 5 H. Alper and R. A. Partic, J. Organometal, Chem., 44 (1972) 371.
- 6 D. A. Allison, J. Clardy and J.G. Verkade, Inorg. Chem., 11 (1972) 2804.
- 7 P.M. Treichel, W.K. Dean and W.M. Douglas, Inorg. Chem., 11 (1972) 1609,
- 8 P.M. Treichel, W.M. Douglas and W.K. Dean, Inorg. Chem., 11 (1972) 1615.
- 9 J. Grobe and U. Möller, J. Organometal. Chem., 36 (1972) 335.
- 10 T. Fukumoto, Y. Matsumura and R. Okawara, J. Organometal. Chem., 37 (1972) 113.
- 11 F.W.B. Einstein and R.D.G. Jones, J. Chem. Soc. Dalton, (1972) 442.
- 12 M. Akhtar, P.D. Ellis, A.G. Macdiarmid and J.D. Odom, Inorg. Chem., 11 (1972) 2917.
- 13 H. Kisch, J. Organometal. Chem., 36 (1972) C19.
- 14 R.B. Bennett, Inorg. Chem., 9 (1970) 429; M. Herberhold and W. Golla, J. Organometal, Chem.,
- 26 (1971) C27.
- 15 R.G. Little and R.J. Doedens, Inorg. Chem., 11 (1972) 1392.
- 16 D.P. Madden, A.J. Carty and T. Birchall, Inorg. Chem., 11 (1972) 1453. 17 A.J. Carty, D.P. Madden, M. Mathew, G.J. Palenik and T. Birchall, Chem, Commun., (1970) 1664.
- 18 H.A. Patel, A.J. Carty, M. Mathew and G.J. Palenik, Chem. Commun., (1972) 810.
- 19 H. Alper, Inorg. Chem., 11 (1972) 976.
- 20 R.C. Dobbie, M.J. Hopkinson and D. Whittsker, J. Chem. Soc. Dalton, (1972) 1030.
- 21 W.M. Douglas and J.K. Ruff, Inorg. Chem., 11 (1972) 901.
- 22 K. Yasufuku and H. Yamazaki, J. Organometal. Chem., 35 (1972) 367.
- 23 C. Floriani, R. Henzi and F. Calderazzo, J. Chem. Soc. Dalton, (1972) 2640.
- P. Rosenbuch and N. Welcman, J. Chem. Soc. Dalton, (1972) 1963.
 J.A. de Beer and R.J. Haines, J. Organometal. Chem., 37 (1972) 173.
- 26 J.A. de Beer and R.J. Haines, J. Organometal. Chem., 36 (1972) 297.
- H. Buttner and R.D. Feltham, Inorg. Chem., 11 (1972) 971.
 J.S. Ricci, C.A. Eggers and I. Bernal, Inorg. Chim. Acta, 6 (1972) 97.
- 29 C.J. Jones, J.A. McCleverty and D.G. Orchard, J. Chem. Soc. Dalton, (1972) 1109.
- 30 K.A. Rubinson and G. Palmer, J. Amer. Chem. Soc., 94 (1972) 8375.
- 31 K. Öfele and E. Dotzauer, J. Organometal. Chem., 42 (1972) C87.
- 32 M.B. Hall and R.F. Fenske, Inorg. Chem., 11 (1972) 1619.
- 33 J.V. Kingston and G.R. Scollary, J. Inorg. Nucl. Chem., 34 (1972) 227.
- 34 E. Benedetti, G. Braca, G. Sbrana, F. Salvetti and B. Grassi, J. Organometal. Chem., 37 (1972) 361.
- 35 G.D. Watt, J. Amer. Chem. Soc., 94 (1972) 7351.
- 36 D. Cullen, E. Meyer, T.S. Srivastava and M. Tsutsui, Chem. Commun., (1972) 584.
- 37 M. Tsutsui, D. Ostfeld and L.M. Hoffman, J. Amer. Chem. Soc., 93 (1971) 1820; M. Tsutsui,
- D. Ostfeld, J.M. Francis and L.M. Hoffman, J. Coord. Chem., 1 (1971) 115.
- 38 G.W. Sovocool, F.R. Hopf and D.G. Whitten, J. Amer. Chem. Soc., 74 (1972) 4350.
- 39 S.S. Eaton, G.R. Eaton and R.H. Holm, J. Organometal. Chem., 39 (1972) 179.
- 40 D.H. Gerlach, W.G. Peet and E.L. Muetterties, J. Amer. Chem. Soc., 94 (1972) 4545.
- 41 G.M. Bancroft, R.E.B. Garrod, A.G. Maddock, M.J. Mays and B.E. Prater, J. Amer. Chem. Soc., 94 (1972) 647.
- 42 N. Ahmad, S.D. Robinson and M.F. Uttley, J. Chem. Soc. Dalton, (1972) 843
- 43 W.H. Knoth, J. Amer. Soc., 94 (1972) 104.
- 44 B.E. Cavit, K.R. Grundy and W.R. Roper, Chem. Commun., (1972) 60.
- 45 B.E. Mann, B.L. Shaw and R.E. Stainbank, Chem. Commun., (1972) 151.
- 46 A.T.T. Hsieh, J.D. Ruddick and G. Wilkinson, J. Chem. Soc. Dalton. (1972) 1966.
- 47 R. Mason, K.M. Thomas, D.F. Gill and B.L. Shaw, J. Organometal. Chem., 40 (1972) C67.
- 48 J.P. Collman and W.R. Roper, J. Amer. Chem. Soc., 87 (1965) 4008; Advan. Organometal. Chem., 7 (1968) 54.
- 49 J. Jeffery and R.J. Mawby, J. Organometal. Chem., 40 (1972) C42.
- 50 J.T. Mague and J.P. Mitchener, Inorg. Chem., 11 (1972) 2714.
- 51 S.D. Robinson and M.F. Uttley, Chem. Commun., (1972) 1047.
- 52 B. Demerseman, G. Bouquet and M. Bigorgne, J. Organometal. Chem., 35 (1972) 341.
- 53 A. Davison, D.D. Trafficanto and S.S. Wreford, Chem. Commun., (1972) 1155.

- 54 W. Petz and G. Schmid, J. Organometal. Chem., 35 (1972) 321.
- 55 M.A. Nasta, A.G. Macdiarmid and F.E. Saalfeld, J. Amer. Chem. Soc., 94 (1972) 2449.
- 56 R.K. Pomeroy, R.S. Gay, G.O. Evans and W.A.G. Graham, J. Amer. Chem. Soc., 94 (1972) 272.
- 57 R.K. Pomeroy and W.A.G. Graham, J. Amer. Chem. Soc., 94 (1972) 274.
- 58 J.V. Scibelli and M.D. Curtis, J. Organometal. Chem., 40 (1972) 317.
- 59 R. Ball and M.J. Bennett, Inorg. Chem., 11 (1972) 1806.
- 60 C.J. Gilmore and P. Woodward, J. Chem. Soc. Dalton, (1972) 1387.
- 61 F.W.B. Einstein and R.D.G. Jones, J. Chem. Soc. Dalton, (1972) 2563.
- 62 A.T.T. Hsieh and M.J. Mays, J. Organometal. Chem., 37 (1972) C53.
- 63 M.R. Churchill, J. Wormald, J. Knight and M.J. Mays, J. Amer. Chem. Soc., 93 (1971) 3073.
- 64 E.H. Braye, L.F. Dahl, W. Hubel and D.L. Wampler, J. Amer. Chem. Soc., 84 (1962) 4633.
- 65 D.B.W. Yawney and R.J. Doedens, Inorg. Chem., 11 (1972) 838.
- 66 J.R. Norton, J.P. Collman, G. Dolcetti and W.T. Robinson, Inorg. Chem., 11 (1972) 382.
- 67 C.R. Eady, B.F.G. Johnson and J. Lewis, J. Organometal. Chem., 37 (1972) C39.
- 68 A.T.T. Hsieh and M.J. Mays, J. Organometal. Chem., 39 (1972) 157.
- 69 M.I. Bruce, G. Shaw and F.G.A. Stone, J. Chem. Soc. Dalton. (1972) 1082.
- 70 R. Mason, J. Zubieta, A.T.T. Hsieh, J. Knight and M.J. Mays, Chem. Commun., (1972) 200.
- 71 V.G. Albano, G. Ciani, M.I. Bruce, G. Shaw and F.G.A. Stone, J. Organometal. Chem., 42 (1972) C99.
- 72 M.I. Bruce, G. Shaw and F.G.A. Stone, J. Chem. Soc. Dalton, (1972) 1781.
- 73 J. Knight and M.J. Mays, J. Chem. Soc. Dalton, (1972) 1022.
- 74 W.R. Moss and W.A.G. Graham, J. Organometal. Chem., 23 (1970) C23.
- 75 M.R. Churchill and R. Bau, Inorg. Chem., 7 (1968) 2606.
- 76 R.J. Doedens and L.F. Dahl, J. Amer. Chem. Soc., 88 (1966) 4847.
- 77 M.R. Churchill, J. Wormald, J. Knight and M.J. Mays, Chem. Commun., (1970) 458.
- 78 A.J. Carty, B.F.G. Johnson, J. Lewis and J.R. Norton, Chem. Commun., (1972) 1331.
- 79 A.J. Carty, B.F.G. Johnson and J. Lewis, J. Organometal. Chem., 43 (1972) C35.
- 80 R. Mason and K.M. Thomas, J. Organometal. Chem., 43 (1972) C39.
- 81 L.F. Dahl and D.L. Smith, J. Amer. Chem. Soc., 84 (1962) 2450.
- 82 A.J.P. Domingos, B.F.G. Johnson and J. Lewis, J. Organometal. Chem., 36 (1972) C43.
- 83 E. Sappa, O. Gambino, L. Milone and G. Certini, J. Organometal. Chem., 39 (1972) 169.
- 84 J.F. Blount, L.F. Dahl, C. Hoogzand and W. Hübel, J. Amer. Chem. Soc., 88 (1966) 292.
- 85 O. Gambino, E. Sappa and G. Cetini, J. Organometal. Chem., 44 (1972) 185.
- 86 M. Valle, O. Gambino, L. Milone, G.A. Vaglio and G. Cetini, J. Organometal. Chem., 38 (1972) C46.
- 87 G. Cetini, O. Gambino, E. Sappa and M. Valle, J. Organometal. Chem., 17 (1969) 437.
- 88 M. Evans, M. Hursthouse, E.W. Randall, E. Rosenberg, L. Milone and M. Valle, Chem. Commun., (1972) 545.
- 89 M.I. Bruce, M.A. Cairns, A. Cox, M. Green, M.D.H. Smith and P. Woodward, Chem. Commun., (1970) 735.
- 90 R.P. Ferrari, G.A. Vaglio, O. Gambino, M. Valle and G. Cetini, J. Chem. Soc. Dalton, (1972) 1998.
- 91 G. Ferraris and G. Gervasio, J. Chem. Soc. Dalton, (1972) 1057.
- 92 T. O'Connor, A.J. Carty, M. Mathew and G.J. Palenik, J. Organometal Chem., 38 (1972) C15.
- 93 A.A. Hock and O.S. Mills, Acta Cryst., 13 (1961) 139: Y. Degreve, J. Meunier-Piret, M. van Meersche and P. Piret, Acta Cryst., 23 (1967) 119.
- 94 M.I. Bruce, M.A. Cairns and M. Green, J. Chem. Soc. Dalton, (1972) 1293.
- 95 C.W. Bradford, R.S. Nyholm, G.J. Gainsford, J.M. Guss, P.R. Ireland and R. Mason, Chem. Commun., (1972) 87.
- 96 G.J. Gainsford, J.M. Guss, P.R. Ireland, R. Mason, C.W. Bradford, and R.S. Nyholm, J. Organometal. Chem., 40 (1972) C70.
- 97 A.J. Deeming and, R.S. Nyholm and M. Underhill, Chem. Commun., (1972) 224.
- 98 A.J. Deeming and M. Underhill, J. Organometal. Chem., 42 (1972) C60.
- 99 R. Kummer and W.A. Graham, Inorg. Chem., 7 (1968) 1208.
- 100 M. Elder and W.L. Hutcheon, J. Chem. Soc. Dalton, (1972) 175.
- 101 R. Rossetti, P.L. Stanghellini, O. Gambino and G. Cetini, Inorg. Chim. Acta, 6 (1972) 205.
- 102 G. Natile and G. Bor, J. Organometal. Chem., 35 (1972) 185.
- 103 S.A. Khattab, L. Markó, G. Bor and B. Markó, J. Organometal. Chem., 1 (1964) 373.
- 104 E. Sappa, O. Gambino and G. Cetini, J. Organometal. Chem., 35 (1972) 375.
- 105 T. Kruck and R. Kobelt, Chem. Ber., 105 (1972) 3765.
- 106 T. Kruck and R. Kobelt, Chem. Ber., 106 (1972) 3772.
- 107 R. Meakin, E.L. Muetterties and J.P. Jesson, J. Amer. Chem. Soc., 94 (1972) 5271.
- 108 C.A. Udovich and R.J. Clark, J. Organometal. Chem., 36 (1972) 355.
- 109 H. Alper and R.A. Partic, J. Organometal. Chem., 35 (1972) C40.
- 110 M. Schaal and W. Beck, Angew. Chem. Int. Ed. Engl., 11 (1972) 527.
- 111 B.E. Prater, J. Organometal. Chem., 34 (1972) 379.
- 112 G.M. Bancroft and K.D. Butler, J. Chem. Soc. Dalton, (1972) 1209.
- 113 I. Adams, J. M. Thomas, G.M. Bancroft, K.D. Butler and M. Barber, Chem. Commun., (1972) 751.
- 114 A.L. Balch and J.L. Miller, J. Amer. Chem. Soc., 94 (1972) 417.
- 115 D.F. Christian, G.R. Clark, W.R. Roper, J.M. Waters and K.R. Whittle, Chem. Commun., (1972)
- 458. 116 N.G. Connelly, Inorg. Chim. Acta Rev., 6 (1972) 47.
- 116 N.G. Conneny, morg. Cintil. Acta Rev., 6 (1972) 47
- 117 B.F.G. Johnson and J. Segal, J. Chem. Soc. Dalton, (1972) 1268.

- 118 C.G. Pierpoint and R. Eisenberg, Inorg. Chem., 11 (1972) 1094.
- 119 B.W. Graham, K.R. Laing, C.J. O'Connor and W.R. Roper, J. Chem. Soc. Dalton, (1972) 1237.
- 120 G.R. Clark, K.R. Grundy, W.R. Roper, J.M. Waters and K.R. Whittle, Chem. Commun., (1972) 119
- 121 J.T. Veal and D.J. Hodgson, Inorg. Chem., 11 (1972) 1420.
- 122 J.T. Veal and D.J. Hodgson, Acta Cryst., B28 (1972) 3525.
- 123 A.F. Schreiner, S.W. Lin, P.J. Hauser, E.A. Hopcus, D.J. Hamm and J.D. Gunter, Inorg. Ch∈m., 11 (1972) 880.
- 124 S.A. Adeyemi, F.J. Miller and T.J. Meyer, Inorg. Chem., 11 (1972) 994.
- 125 S.D. Robinson and M.F. Uttley, J. Chem. Soc. Dalton, (1972) 1.
- 126 P.G. Douglas and R.D. Feltham, J. Amer. Chem. Soc., 94 (1972) 5254.
- 127 M.S. Quinby and R.D. Feltham, Inorg. Chem., 11 (1972) 2468.
- 128 R.D. Feltham, W. Silverthorn, H. Wickman and W. Wesolowski, Inorg. Chem., 11 (1972) 676.
- 129 H. Buttner and R.D. Feltham, Inorg. Chem., 11 (1972) 971.
- 130 G. Cardaci and S.M. Murgia, Inorg. Chim. Acta, 6 (1972) 222.
- 131 R.E. Dessy, J.C. Charkoudian and A.L. Rheingold, J. Amer. Chem. Soc., 94 (1972) 738.
- 132 T.S. Srivastava, L. Hoffman and M. Tsutsui, J. Amer. Chem. Soc., 94 (1972) 1385.
- 133 C.G. Pierpoint and R. Eisenberg, Inorg. Chem., 11 (1972) 1088.
- 134 S.T. Wilson and J.A. Osborn, J. Amer. Chem. Soc., 93 (1971) 3068.
- 135 R. Eisenberg, A.P. Gaughan, C.G. Pierpoint, J. Reed and A.J. Schultz, J. Amer. Chem. Soc., 94 (1972) 6240.
- 136 M.D. Curtis and R.C. Job., J. Amer. Chem. Soc., 94 (1972) 2153.
- 137 E.O. Fischer, H.-J. Beck, C. Kreiter, J. Lynch, J. Muller and E. Winkler, Chem. Ber., 105 (1972) 162.
- 138 K. Ofele and C.G. Kreiter, Chem. Ber., 105 (1972) 529.
- 139 G. Huttner and W. Gartzke, Chem. Ber., 105 (1972) 2714.
- 140 R.J. Sundberg, R.E. Shepherd and H. Taube, J. Amer. Chem. Soc., 94 (1972) 6558.
- 141. E.O. Fischer, F.R. Kreibl, E. Winkler and C.G. Kreiter, Chem. Ber., 105 (1972) 588.
- 142 V. Kiener and E.O. Fischer, J. Organometal. Chem., 42 (1972) 447.
- 143 E.O. Fischer, E. Winkler, G. Huttner and D. Regler, Angew. Chem. Int. Ed. Engl., 11 (1972) 238.
- 144 G. Huttner and D. Regler, Chem. Ber., 105 (1972) 2726.
- 145 W. Petz and G. Schmid, Angew. Chem. Int. Ed. Engl., 11 (1972) 934.
- 146 J.G. Bullitt, F.A. Cotton and T.J. Marks, Inorg. Chem., 11 (1972) 671.
 147 O.A. Gansow, A.R. Burke and W.D. Vernon, J. Amer. Chem. Soc., 94 (1972) 2550.
- 148 R.D. Adams and F.A. Cotton, J. Amer. Chem. Soc., 94 (1972) 6193.
- 149 R.B. King and M.S. Saran, J. Amer. Chem. Soc., 94 (1972) 1784.
- 150 A. Alich, N.J. Nelson, D. Strode and D.F. Shriver, Inorg. Chem., 11 (1972) 2976.
- 151 A.E. Crease and P. Legzdins, Chem. Commun., (1972) 268.
- 152 N.J. Nelson, N.E. Kime and D.F. Shriver, J. Amer. Chem. Soc., 91 (1969) 5173.
- 153 R.J. Haines and A.L. du Preez, Inorg. Chem., 11 (1972) 330.
- 154 J.A. Ferguson and T.J. Meyer, Inorg. Chem., 11 (1972) 631.
- 155 D.F. Hunt and J.W. Russell, J. Amer. Chem. Soc., 94 (1972) 7198, J, Organometal. Chem., 46 (1972) C22.
- 156 J.A. Ferguson and T.J. Meyer, J. Amcr. Chem. Soc., 94 (1972) 3409.
- 157 M.A. Neuman, Trinh-Toan and L.F. Dahl, J. Amer. Chem. Soc., 94 (1972) 3383.
- 158 Trinh-Toan, W.P. Fehlhammer and L.F. Dahl, J. Amer. Chem. Soc., 94 (1972) 3389.
- 159 N.G. Connelly and J.D. Davies, J. Organometal Chem., 38 (1972) 385.
- 160 M.L. Brown, J.L. Cramer, J.A. Ferguson, T.J. Meyer and N. Winterton, J. Amer. Chem. Soc., 94 (1972) 8707.
- 161 R.J. Angelici and L.C. Black, Inorg. Chem., 11 (1972) 1754.
- 162 J. Ellermann, H. Behrens and H. Krohberger, J. Organometal. Chem., 46 (1972) 119.
- 163 W. Jetz and R.J. Angelici, Inorg. Chem., 11 (1972) 1960.
- 164 M.Y. Darensbourg, J. Organometal. Chem., 38 (1972) 133.
- 165 P.M. Treichel, W.K. Dean and W.M. Douglas, J. Organometal. Chem., 42 (1972) 145.
- 166 R.C. Dobbie, P.R. Mason and R.J. Porter, Chem. Commun., (1972) 612.
- 167 R.J. Haines and C.R. Nolte, J. Organometal. Chem., 36 (1972) 163.
- 168 M.R. Churchill, B.G. DeBoer, K.L. Kalra, P. Reich-Rohrwig and A. Wojcicki, Chem. Commun., (1972) 981.
- 169 M.R. Churchill and J. Wormald, Inorg. Chem., 10 (1971) 572.
- 170 W. Ehrl and H. Vahrenkamp, Chem. Ber., 105 (1972) 1471.
- 171 J.A. de Beer, R.J. Haines and R. Greatrex, Chem. Commun., (1972) 1094.
- 172 G. Wulfsberg and R. West, J. Amer. Chem. Soc., 94 (1972) 6069.
- 173 M. Pankowski, B. Demerseman, G. Bouquet and M. Bigorgne, J. Organometal. Chem., 35 (1972) 155
- 174 D.J. Darensbourg, Inorg. Chem., 11 (1972) 1606.
- 175 O.A. Gansow, D.A. Schexnayder and B.Y. Kimura, J. Amer. Chem. Soc., 94 (1972) 3406.
- 176 D.J. Jones and R.J. Mawby, Inorg. Chim. Acta, 6 (1972) 157.
- 177 H. Brunner and M. Vogel, J. Organometal. Chem., 35 (1972) 169.
- 178 R.B. King and A. Efraty, J. Amer. Chem. Soc., 94 (1972) 3768.
- 179 R.B. King, W.C. Zipperer and M. Ishaq, Inorg. Chem., 11 (1972) 1361.
- 180 R.J. Haines and A.L. du Preez, J. Chem. Soc. Dalton, (1972) 944
- 181 G.B. McVicker and R.S. Matyas, Chem. Commun., (1972) 972.

- 182 J.M. Burlitch and S.E. Hayes, J. Organometal. Chem., 42 (1972) C13.
- 183 H.M.M. Shearer and C.B. Spencer, Chem. Commun, (1966) 194.
- 184 A.T.T. Hsieh and M.J. Mays, J. Organometal. Chem., 37 (1972) 9.
- 185 J. Dalton, Inorg. Chem., 11 (1972) 915.
- 186 W. Malisch, J. Organometal. Chem., 39 (1972) C28.
- 187 R.C. Edmondson, R. Eisner, M.J. Newlands and L.K. Thompson, J. Organometal. Chem., 35 (1972) 119.
- 188 S.A.R. Knox, R.P. Phillips and F.G.A. Stone, Chem. Commun., (1972) 1227.
- 189 P. Hackett and A.R. Manning, J. Chem. Soc. Dalton, (1972) 1487; J. Organometal. Chem., 34 (1972) C15.
- 190 G.M. Bancroft, K.D. Butler and A.T. Rake, J. Organometal. Chem., 34 (1972) 137; G.M. Bancroft, K.D. Butler, A.T. Rake and B. Dale, J. Chem. Soc. Dalton, (1972) 2025.
- 191 A.R. Manning, J. Chem. Soc. Dalton, (1972) 821.
- 192 R.J. Haines, R. Mason, J.A. Zubieta and C.R. Nolte, Chem. Commun., (1972) 990.
- 193 K. Yasufuku and H. Yamazaki, J. Organometal. Chem., 38 (1972) 367.
- 194 A.N. Nesmeyanov, I.T. Leshcheva, I.V. Polovyanyuk, Yu.A. Ustynyuk and L.G. Makarova, J. Organometal. Chem., 37 (1972) 159.
- 195 D.W. Lichtenberg and A. Wojcicki, J. Amer. Chem. Soc., 94 (1972) 8271.
- 196 A. Cutler, R.W. Fish, W.P. Giering and M. Rosenblum, J. Amer. Chem. Soc., 94 (1972) 4354.
- 197 W.P. Giering, S. Raghu, M. Rosenblum, A. Cutler, D. Ehntholt and R.W. Fish, J. Amer. Chem. Soc., 94 (1972) 8251.
- 198 W. Jetz and R.J. Angelici, J. Organometal. Chem., 35 (1972) C37.
- 199. R.B. King, A. Efraty and W.C. Zipperer, J. Organometal. Chem., 38 (1972) 121.
- 200 M.R. Churchill, J. Wormald, W.P. Giering and G.F. Emerson, Chem. Commun., (1968) 1217; R.E. Davis, Chem. Commun., (1968) 1218; M.R. Churchill and J. Wormald, Inorg. Chem., 8 (1969) 1936.
- 201 D.J. Ciappenelli, F.A. Cotton and L. Kruczynski, J. Organometal. Chem., 42 (1972) 159.
- 202 A.J. Campbell, C.A. Fyfe, R.G. Goel, E. Maslowsky and C.V. Senoff, J. Amer. Chem. Soc., 94 (1972) 8387.
- 203 M.I. Bruce, R. Clark, J. Howard and P. Woodward, J. Organometal. Chem., 42 (1972) C107.
- 204 P.W.R. Corfield and H.M.M. Shearer, in G.E. Coates, K. Wade and M.L.H. Green, (Eds.), Organometallic Compounds, Methuen, London, Vol 2, 1968, p. 275.
- 205 H. Brunner and E. Schmidt, J. Organometal. Chem., 36 (1972) C18.
- 206 J. Thompson, W. Keeney, M.C. Baird and W.F. Reynolds, J. Organometal. Chem., 40 (1972) 205.
- 207 R.B. King and W.C. Zipperer, Inorg. Chem., 11 (1972) 2119.
- 208 T. Kruck, M. Höfler and L. Liebig, Chem. Ber., 105 (1972) 1174.
- 209 Y. Yamamoto and H. Yamazaki, Inorg. Chem., 11 (1972) 211.
- 210 R.B. King and P.N. Kapoor, Inorg. Chim. Acta, 6 (1972) 791.
- 211 Y. Yamamoto and A. Wojcicki, Chem. Commun., (1972) 1088.
- 212 M.I. Bruce, R.C.F. Gardner and F.G.A. Stone, J. Organometal. Chem., 40 (1972) C39
- 213 K.R. Aris, V. Aris and J.M. Brown, J. Organometal. Chem., 42 (1972) C67.
- 214 W.P. Giering, M. Rosenblum and J. Tancrede, J. Amer. Chem. Soc., 94 (1972) 7170.
- 215 A. Davison and D.L. Regler, J. Amer. Chem. Soc., 94 (1972) 9237.
- 216 J. Muller and B. Mertschenk, Chem. Ber., 105 (1972) 3346.
- 217 J.F. Helling and D.M. Braitsch, J. Amer. Chem. Soc., 92 (1970) 7207.
- 218 M. Mathew and G.J. Palenik, Inorg. Chem., 11 (1972) 2809.
- 219 L.I. Zakharkin, L.V. Orlova, B.V. Loshkin and L.A. Fedorov, J. Organometal, Chem., 40 (1972) 15.
- 220 L.G. Sneddon and R.N. Grimes, J. Amer. Chem. Soc., 94 (1972) 7161.
- 221 D.C. Beer and L.J. Todd, J. Organometal. Chem., 36 (1972) 77
- 222 D.C. Andrews and G. Davidson, J. Organometal. Chem., 36 (1972) 349.
- 223 R.B. King and I. Haiduc, J. Amer. Chem. Soc., 94 (1972) 4044.
- 224 A. Bond and M. Green, J. Chem. Soc. Dalton, (1972) 763
- 225 E.E. Nunn and R.N. Warrener, Chem. Commun., (1972) 818.
- 226 R.W. Roberts and A. Wissner, J. Amer. Chem. Soc., 94 (1972) 7168.
- 227 M. Aresta, P. Giannoccaro, M. Rossi and A. Sacco, Inorg. Chim. Acta, 5 (1971) 115.
- 228 E. Koerner von Gustorf, I. Fischler, J. Leitich and H. Dreeskamp, Angew. Chem. Int. Ed. Engl., 11 (1972) 1088.
- 229 C.C. Lee, R.G. Sutherland and B.J. Thomson, Chem. Commun., (1972) 907.
- 230 R.A. Zelonka and M.C. Baird, J. Organometal. Chem., 35 (1972) C43.
- 231 M.A. Bennett, G.B. Robertson and A.K. Smith, J. Organometal. Chem., 43 (1972) C41.
- 232 R.A. Zelonka and M.C. Baird, J. Organometal. Chem., 44 (1972) 383.
- 233 G. Huttner and S. Lange, Acta Cryst., B28 (1972) 2049.
- 234 M.F. Bailey and L.F. Dahl, Inorg. Chem., 4 (1965) 1298.
- 235 D.C. Andrews and G. Davidson, J. Organometal. Chem., 35 (1972) 161.
- 236 S. Komiya, A. Yamamoto and S. Ikeda, J. Organometal. Chem., 42 (1972) C65.
- 237 B.F.G. Johnson and J.A. Segal, Chem. Commun., (1972) 1312.
- 238 H. Thyret, Angew. Chem., Int. Ed. Engl., 11 (1972) 520.
- 239 R.W. Giese and B.L. Vallee, J. Amer. Chem. Soc., 94 (1972) 6199.
- 240. J.Y. Chenard, D. Commereuc and Y. Chauvin, Chem. Commun., (1972) 750.
- 241 S.M. Nelson and M. Sloan, Chem. Commun., (1972) 745.
- 242 J.M. Landesberg and L. Katz, J. Organometal. Chem., 35 (1972) 327.

- 243 M.I. Foreman, J. Organometal. Chem., 39 (1972) 161.
- 244 D.E. Kuhn and C.P. Lillya, J. Amer. Chem. Soc., 94 (1972) 1682.
- 245 M. Brookhart and D.L. Harris, J. Organometal. Chem., 42 (1972) 441.
- 246 R.E. Graf and C.P. Lillya, J. Amer. Chem. Soc., 94 (1972) 8282.
- 247 R. Victor, R. Ben-Shoshan and S. Sarel, J. Org. Chem., 37 (1972) 1930.
- 248 F.H. Herbstein and M.G. Reisner, Chem. Commun., (1972) 1077.
- 249 J.A.S. Honell, B.F.G. Johnson, P.L. Josty and J. Lewis, J. Organometal. Chem., 39 (1972) 329.
- 250 A.M. Brodie, B.F.G. Johnson, P.L. Josty and J. Lewis, J. Chem. Soc. Dalton, (1972) 2031.
- 251 A. de Cian and R. Weiss, Acta Cryst., B28 (1972) 3273.
- 252 A. de Cian and R. Weiss, Acta Cryst., B28 (1972) 3264.
- 253 A. Carbonaro and F. Cambisi, J. Organometal. Chem., 44 (1972) 171.
- 254 E. Koerner von Gustorf, O. Jaenicke and O.E. Polansky, Angew. Chem. Int. Ed. Engl., 11 (1972) 532
- 255 D.L. Williams-Smith, L.R. Wolf and P.S. Skell, J. Amer. Chem. Soc., 94 (1972) 4042.
- 256 G. Davidson and D.A. Duse, J. Organometal. Chem., 44 (1972) 365.
- 257 I.W. Bassi and R. Scordamaglia, J. Organometal. Chem., 37 (1972) 353.
- 258 D.F. Hunt, J.W. Russell and R.L. Torian, J. Organometal. Chem., 43 (1972) 175.
- 259 T.H. Kruck and L. Knoll, Chem. Ber., 105 (1972) 3783.
- 260 R.B. King and A. Efraty, J. Amer. Chem. Soc., 94 (1972) 3773.
- 261 Y.L. Chow, J. Fossey and R.A. Perry, Chem. Commun., (1972) 501.
- 262 H. Alper and E.C.-H. Keung, J. Amer. Chem. Soc., 94 (1972) 2144.
- 263 J.D. Warren, M.A. Busch and R.J. Clark, Inorg. Chem., 11 (1972) 452.
- 264 F.A. Cotton and G. Deganello, J. Amer. Chem. Soc., 94 (1972) 2142.
 265 R.J.H. Cowles, B.F.G. Johnson, J. Lewis and A.W. Parkins, J. Chem. Soc. Dalton, (1972) 1768.
- 266 J.J. Hough and E. Singleton, Chem. Commun., (1972) 371.
- 267 R.B. King and P.N. Kapoor, Inorg. Chem., 11 (1972) 336.
- 268 A. Gieren and W. Hoppe, Acta Cryst., B28 (1972) 2766.
- 269 D.F. Hunt, G.C. Farrant and G.T. Rodeheaver, J. Organometal. Chem., 38 (1972) 349.
- 270 B.F.G. Johnson, J. Lewis, P. McArdle and G.L.P. Randall, J. Chem. Soc. Dalton, (1972) 456. 271 P.L. Pauson, G.H. Smith, J.H. Valentine, J. Chem. Soc., C, (1967) 1061; P.E. Baikie, O.S. Mills,
- P.L. Pauson, G.H. Smith and J.H. Valentine, Chem. Commun., (1965) 425.
- 272 F.A. Cotton and G. Deganello, J. Organometal. Chem., 38 (1972) 147.
- 273 H.W. Whitlock and H. Stucki, J. Amer. Chem. Soc., 94 (1972) 8594.
- 274 R. Aumann, Angew. Chem. Int. Ed. Engl., 11 (1972) 522.
- 275 G. Huttner and D. Regler, Chem. Ber., 105 (1972) 3936.
- 276 G.N. Schrauzer, P. Glockner, K.I.G. Reid and I.C. Paul, J. Amer. Chem. Soc., 92 (1970) 4479.
- 277 G. Rigatti, G. Boccalon, A. Ceccon and G. Giacometti, Chem. Commun., (1972) 1165.
- 278 A.J. Campbell, C.A. Fyfe and E. Maslowsky, J. Amer. Chem. Soc., 94 (1972) 2690.
- 279 T.A. Manuel and F.G.A. Stone, J. Amer. Chem. Soc.. 82 (1960) 366; M.D. Rausch and G.N. Schrauz-Chem. Ind., (1959) 957.
- 280 J. Schwartz, Chem. Commun., (1972) 814.
- 281 M. Brookhart, E.R. Davis and D.L. Harris, J. Amer. Chem. Soc., 94 (1972) 7853.
- 282 D.J. Ehntholt and R.C. Kerber, J. Organometal. Chem., 38 (1972) 139.
- 283 M. Green, S. Tolson, J. Weaver, D.C. Wood and P. Woodward, Chem. Commun., (1971) 222; S.R. Su and A. Wojcicki, J. Organometal. Chem., 31 (1971) C34; W.P. Giering and M. Rosenblum, J. Amer. Chem. Soc., 93 (1971) 5299.
- 284 K.B. Birnbaum, Acta Cryst., B28 (1972) 161.
- 285 A.H.-J. Wang, I.C. Paul and G.N. Schrauzer, Chem. Commun., (1972) 736.
- 286 C.E. Cottrell, C.A. Fyfe and C.V. Senoff, J. Organometal. Chem., 43 (1972) 203.
- 287 D.H. Gibson and R.L. Vonnahme, J. Amer. Chem. Soc., 94 (1972) 5090.
- 288 D.H. Gibson and R.L. Vonnahme, Chem. Commun., (1972) 1021.
- 289 A.E. Hill and H.M.R. Hoffmann, Chem. Commun., (1972) 574.
- 290 G. Cardaci, S.M. Murgia and A. Foffani, J. Organometal. Chem., 37 (1972) C11.
- 291 R.B. King and A. Bond, J. Organometal. Chem., 46 (1972) C53.
- 292 Y. Becker, A. Eisenstadt and Y. Shvo, Chem. Commun., (1972) 1156.
- 293 F.A. Cotton and M.D. LaPrade, J. Organometal. Chem., 39 (1972) 345.
- 294 R. Aumann and B. Lohmann, J. Organometal. Chem., 44 (1972) C51.
- 295 A.E. Smith, Inorg. Chem., 11 (1972) 2306.
- 296 K. Ehrlich and G.F. Emerson, J. Amer. Chem. Soc., 94 (1972) 2464.
- 297 W.E. Billups, L.-P. Lin and O.A. Gansow, Angew. Chem. Int. Ed. Engl., 11 (1972) 637.
- 298 D.C. Andrews and G. Davidson, J. Organometal. Chem., 43 (1972) 393.
- 299 R.J. Clark, M.R. Abraham and M.A. Busch, J. Organometal. Chem., 35 (1972) C33.
- 300 S. Otsuka, A. Nakamura and K. Tani, J. Chem. Soc., A, (1971) 154.
- 301 N. Yasuda, Y. Kai, N. Yasuoka, N. Kasai and M. Kakudo, Chem. Commun., (1972) 157.
- 302 W.O. Siegl and J.P. Collman, J. Amer. Chem. Soc., 94 (1972) 2516.
- 303 J.P. Collman, S.R. Winter and D.R. Clark, J. Amer. Chem. Soc., 94 (1972) 1788.
- 304 J.P. Collman, J.N. Cawse and J.I. Brauman, J. Amer. Chem. Soc., 94 (1972) 5905.
- 305 C.S. Cundy, and M.F. Lappert, Chem. Commun., (1972) 445. 306 J.L. Davidson, W. Harrison, D.W.A. Sharp and G.A. Sim, J. Organometal. Chem., 46 (1973) C47.
- 307 R.M. Moriarty, K.-N. Chen, C.-L. Yeh, J.L. Flippen and J. Karle, J. Amer. Chem. Soc., 94 (1972) 8944.

- 308 R.B. Hing and C.W. Eavenson, J. Organometal. Chem., 42 (1972) C95.
- 309 R.L. Bennett, M.I. Bruce, B.L. Goodall, M.Z. Iqbal and F.G.A. Stone, J. Chem. Soc. Dalton, (1972) 1784.
- 310 M.I. Bruce, J. Howard, I.W. Nowell, G. Shaw and P. Woodward, Chem. Commun., (1972) 1041.
- 311 J.J. Levison and S.D. Robinson, J. Chem. Soc., A, (1970) 639.
- 312 B.K. Bower and H.G. Tennent, J. Amer. Chem. Soc., 94 (1972) 2512. 313 B. Sarry and S. Noll, Z. Anorg. Allg. Chem., 394 (1972) 141.
- 314 V.D. Bianco, S. Doronzo and M. Aresta, J. Organometal. Chem., 42 (1972) C63.
- 315 Y. Kubo, A. Yamamoto and S. Ikeda, J. Organometal. Chem., 46 (1972) C50.
- 316 M.E. Vol'pin, R. Taube, H. Drevs, L.G. Volkova, I.Ya. Levitin and T.N. Ushakova, J. Organometal. Chem., 39 (1972) C79.
- 317 B. Jezowska-Trzebiatowska and P. Subota, J. Organometal. Chem., 46 (1973) 339.
- 318 R. Noyori, I. Umeda and T. Ishigami, J. Org. Chem., 37 (1972) 1542.
- 319 H. Alper, J. Org. Chem., 37 (1972) 3972.
- 320 B. Hudson, D.E. Webster and P.B. Wells, J. Chem. Soc. Dalton, (1972) 1204.
- 321 G.G. Eberhardt, M.E. Tadros and L. Vaska, Chem. Commun., (1972) 290.
- 322 P.G. Gassman and T.J. Atkins, J. Amer. Chem. Soc., 94 (1972) 7748.
- 323 P.G. Gassman, G.R. Meyer and F.J. Williams, J. Amer. Chem. Soc., 94 (1972) 7741.
- 324 D.F. Ewing, B. Hudson, D.E. Webster and P.B. Wells, J. Chem. Soc. Dalton, (1972) 1287.
- 325 G. Gregorio, G.F. Pregaglia and R. Ugo, J. Organometal. Chem.. 37 (1972) 385.
- 326 J. Drapier, A.J. Hubert and Ph. Teyssie, Chem. Commun., (1972) 484.
- 327 H. Alper and E.C.H. Keung, J. Org. Chem., 37 (1972) 2566.
- 328 R. Noyori, K. Yokoyama, S. Makino and Y. Hayakawa, J. Amer. Chem. Soc., 94 (1972) 1772.
- 329 R. Noyori, Y. Hayakawa, M. Funakura, H. Takaya, S. Murai, R.I. Kobayashi and S. Tsutsumi, J. Amer. Chem. Soc., 94 (1972) 7202.
- 330 C.H. Bamford and M.U. Mahmud, Chem. Commun., (1972) 762.